研究生: |
李曜宇 Lee, Yao-Yu |
---|---|
論文名稱: |
探討有機發光二極體中純碳氫主體材料的結構-堆積-載子遷移率之間的關係 Understanding the structure-packing-mobility relationship of pure hydrocarbons host materials in OLEDs |
指導教授: |
林昆翰
Lin, Kun-Han |
口試委員: |
林祥泰
Lin, Shiang-Tai 吳典霖 Wu, Tien-Lin 林玠廷 Lin, Chieh-Ting |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 有機發光二極體 、純碳氫 、主體材料 、螺二芴 、載子遷移率 |
外文關鍵詞: | organic light-emitting diodes, pure hydrocarbon, host materials, spirobifluorene, mobility |
相關次數: | 點閱:43 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雖然高效能的紅光和綠光磷光有機發光二極體 (phosphorescent organic light-emitting diode, PhOLED) 已成功商業化,藍光PhOLED因穩定性問題而壽命較短,其中主體材料的穩定性在延長藍光元件壽命方面扮演著重要角色。螺二芴(spirobifluorene, SBF) 衍生物因其高三重態能量和良好的熱穩定性,被認為是有潛力的藍光PhOLED主體材料。先前的研究對SBF衍生物的結構與電化學和光物理性質之間的關係進行了系統性的探討。然而,對於影響PhOLED元件穩定性的關鍵性質──電荷傳輸──的研究仍然缺乏。因此,本篇研究的目標是透過探討一系列SBF衍生物的結構-堆積-載子遷移率之間的關係 (structure–packing–mobility relationship, SPMR),提供設計平衡且快速電荷傳輸的主體材料所需的分子設計。
在本篇論文中,我們將探討兩系列SBF衍生物的SPMR,第一部分為探討藉由不同取代位置所形成SBF二聚體之結構異構物,第二部分為探討不同取代基與取代位置對於SBF單體之影響。我們採用了多尺度方法來模擬這些分子的載子遷移率,透過分析分子結構、分子堆積以及電荷傳輸參數:重組能、轉移積分和能量紊亂之間的關係,希望透過分子設計實現快速且平衡的電荷傳輸特性。
在第一部分的研究中,我們發現這10個結構異構物的能量紊亂都很低,約在0.1 eV 左右,這是因為這些分子都有非常小的分子偶極矩。此外,連接2號與4號位置的SBF二聚體電子的重組能都較電洞來得高,而轉移積分的分析顯示,大多異構物的電子與電洞轉移積分分布差異不大,因此,這系列的分子電荷傳輸行為主要由重組能主導,轉移積分為次要因素。為方便引用不同連接位置的SBF二聚體,我們以連接位置進行命名,比如SBF二聚體若透過n與m號位置相接,則命名為n,m”-(SBF)2,或簡稱為n,m。我們發現1,1、1,3及1,4分子具有平衡的電荷傳輸性質,而連接2號與4號位置的異構物則具有很不平衡的電荷傳輸性質(電子傳輸遠慢於電洞傳輸)。
在第二部分的研究中,我們觀察到隨著取代基從苯、聯苯到三聯苯的變化,對重組能和能量紊亂的影響較小,而電子與電洞的轉移積分比值隨取代基的變化有所增加。此外,連接2號位置的SBF衍生物具有較為平衡的轉移積分分布。重組能方面,取代基位在2號與4號位置的SBF衍生物表現出較高的電子重組能,這與第一部分中觀察到的趨勢相同。在這個系列的分子中,由於重組能與轉移積分之間的相互補償效應,大部分分子顯示出平衡的電荷傳輸性質。然而2號位置的SBF衍生物是個例外,其電子遷移率遠低於其電洞遷移率。這是由於其轉移積分分布較為平衡,因此較高的電子重組能導致較低的電子載子遷移率。
Although high-performance phosphorescent organic light-emitting diodes (PhOLEDs) for red and green light have been successfully commercialized, blue PhOLEDs suffer from shorter lifetimes due to stability issues. The stability of host materials is crucial for extending the lifetime of blue light devices. Spirobifluorene (SBF) derivatives are considered promising host materials for blue PhOLEDs due to their high triplet energy and good thermal stability. Previous studies have systematically explored the relationship between the structure of SBF derivatives and their electrochemical and photophysical properties. However, the influence of charge transport properties remains unknown. Therefore, this study aims to understanding the complex structure-packing-mobility relationships (SPMR) of a series of SBF derivatives to provide molecular design guidelines for host materials with balanced and efficient charge transport.
In this work, we investigate the SPMR of two series of SBF derivatives. The first part investigates the structural isomers of SBF dimers with varying substitution positions, while the second part investigates the effects of different substituents and substitution positions on SBF monomers. We employ a multiscale approach to simulate the charge transport properties of these molecules and analyze the relationships between molecular structure, molecular packing, and charge transport parameters, including reorganization energy (λ), transfer integral (V), and energetic disorder (σ). Our goal is to achieve rapid and balanced charge transport characteristics through systematic molecular design.
In the first part of the study, we found that the energetic disorder of the ten structural isomers was low, around 0.1 eV, due to their very small molecular dipole moments. Additionally, the electron reorganization energy of the SBF dimers linked at positions 2 and 4 were higher than those of the hole. The analysis of transfer integral showed that the differences in electron and hole transfer integral were generally small among most of the isomers. Therefore, the charge transport behavior of this series of molecules is primarily governed by reorganization energy, with transfer integral being a secondary factor. Finally, we observed that the 1,1, 1,3, and 1,4 substituted molecules exhibited balanced charge transport properties, while the isomers linked at positions 2 and 4 exhibited highly unbalanced charge transport properties (with electron transport being much slower than hole transport).
In the second part of the study, we observed that the effect of substituents changing from benzene, biphenyl, to terphenyl had a minimal impact on reorganization energy and energetic disorder. However, the ratio of electron to hole transfer integral increased with the change in substituents. Additionally, SBF derivatives connected at position 2 exhibit a more balanced distribution of transfer integral. Regarding reorganization energy, SBF derivatives with substituents at positions 2 and 4 show higher electron reorganization energy, consistent with the trends observed in the first part. In this series of molecules, due to the compensatory effect between reorganization energy and transfer integral, most molecules exhibit balanced charge transport properties. However, SBF derivatives at position 2 are an exception, with electronic mobility significantly lower than hole mobility. This is attributed to their more balanced distribution of transfer integral, where the higher electron reorganization energy leads to reduced electronic carrier mobility.
1. Baldo, M. A.; O’brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices. Electrophosphorescent Materials and Devices 2023, 1–11.
2. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492(7428), 234–238.
3. Kawamura, Y.; Brooks, J.; Brown, J. J.; Sasabe, H.; Adachi, C. Intermolecular Interaction and a Concentration-Quenching Mechanism of Phosphorescent Ir(III) Complexes in a Solid Film. Phys Rev Lett 2006, 96(1), 017404.
4. Chen, H. W.; Lee, J. H.; Lin, B. Y.; Chen, S.; Wu, S. T. Liquid Crystal Display and Organic Light-Emitting Diode Display: Present Status and Future Perspectives. Light: Science & Applications 2018, 7(3), 17168-17168.
5. Maheshwaran, A.; Gopalan Sree, V.; Park, H.-Y.; Kim, H.; Hyun Han, S.; Yeob Lee, J.; Jin, S.-H.; Maheshwaran, A.; Sree, V. G.; Park, H.; Kim, H.; Jin, S.; Han, S. H.; Lee, J. Y. High Efficiency Deep-Blue Phosphorescent Organic Light-Emitting Diodes with CIE x, y (≤ 0.15) and Low Efficiency Roll-Off by Employing a High Triplet Energy Bipolar Host Material. Adv. Funct. Mater. 2018, 28(36), 1802945.
6. Zhang, Y.; Zheng, Y.; Wang, B.; Ran, H.; Wang, X.; Hu, J. Y.; Wang, Q. Diphenylamine/Triazine Hybrids as Bipolar Hosts for Phosphorescent Organic Light-Emitting Diodes. J. Mater. Chem. C 2020, 8(13), 4461–4468.
7. Rodella, F.; Saxena, R.; Bagnich, S.; Banevičius, D.; Kreiza, G.; Athanasopoulos, S.; Juršėnas, S.; Kazlauskas, K.; Köhler, A.; Strohriegl, P. Low Efficiency Roll-off Blue TADF OLEDs Employing a Novel Acridine–Pyrimidine Based High Triplet Energy Host. J. Mater. Chem. C 2021, 9(48), 17471-17482.
8. Chou, H. H.; Cheng, C. H. A Highly Efficient Universal Bipolar Host for Blue, Green, and Red Phosphorescent OLEDs. Adv. Mater. 2010, 22(22), 2468–2471.
9. Ding, L.; Dong, S. C.; Jiang, Z. Q.; Chen, H.; Liao, L. S. Orthogonal Molecular Structure for Better Host Material in Blue Phosphorescence and Larger OLED White Lighting Panel. Adv. Funct. Mater. 2015, 25(4), 645–650.
10. Hu, S.; Zeng, J.; Zhu, X.; Guo, J.; Chen, S.; Zhao, Z.; Tang, B. Z. Universal Bipolar Host Materials for Blue, Green, and Red Phosphorescent OLEDs with Excellent Efficiencies and Small-Efficiency Roll-Off. ACS Appl. Mater. Interfaces 2019, 11(30), 27134–27144.
11. Lai, C. C.; Huang, M. J.; Chou, H. H.; Liao, C. Y.; Rajamalli, P.; Cheng, C. H. M-Indolocarbazole Derivative as a Universal Host Material for RGB and White Phosphorescent OLEDs. Adv. Funct. Mater. 2015, 25(34), 5548–5556.
12. Li, W.; Li, J.; Liu, D.; Wang, F.; Zhang, S. Bipolar Host Materials for High-Efficiency Blue Phosphorescent and Delayed-Fluorescence OLEDs. J. Mater. Chem. C 2015, 3(48), 12529–12538.
13. Zhang, Z.; Xie, J.; Wang, Z.; Shen, B.; Wang, H.; Li, M.; Zhang, J.; Cao, J. Manipulation of Electron Deficiency of δ-Carboline Derivatives as Bipolar Hosts for Blue Phosphorescent Organic Light-Emitting Diodes with High Efficiency at 1000 Cd m −2. J. Mater. Chem. C 2016, 4(19), 4226–4235.
14. Wang, Y.; Hui Yun, J.; Wang, L.; Yeob Lee, J.; Wang, Y.; Wang, L.; Yun, J. H.; Lee, J. Y. High Triplet Energy Hosts for Blue Organic Light-Emitting Diodes. Adv. Funct. Mater. 2021, 31(12), 2008332.
15. Song, W.; Lee, J. Y.; Song, W.; Lee, J. Y. Degradation Mechanism and Lifetime Improvement Strategy for Blue Phosphorescent Organic Light-Emitting Diodes. Adv. Opt. Mater. 2017, 5(9), 1600901.
16. Lin, N.; Qiao, J.; Duan, L.; Li, H.; Wang, L.; Qiu, Y. Achilles Heels of Phosphine Oxide Materials for OLEDs: Chemical Stability and Degradation Mechanism of a Bipolar Phosphine Oxide/Carbazole Hybrid Host Material. J. Phys. Chem. C 2012, 116(36), 19451–19457.
17. Lin, N.; Qiao, J.; Duan, L.; Wang, L.; Qiu, Y. Molecular Understanding of the Chemical Stability of Organic Materials for OLEDs: A Comparative Study on Sulfonyl, Phosphine-Oxide, and Carbonyl-Containing Host Materials. J. Phys. Chem. C 2014, 118(14), 7569–7578.
18. Li, H.; Hong, M.; Scarpaci, A.; He, X.; Risko, C.; Sears, J. S.; Barlow, S.; Winget, P.; Marder, S. R.; Kim, D.; Brédas, J. L. Chemical Stabilities of the Lowest Triplet State in Aryl Sulfones and Aryl Phosphine Oxides Relevant to OLED Applications. Chem. Mater. 2019, 31(5), 1507–1519.
19. Schmidbauer, S.; Hohenleutner, A.; König, B. Chemical Degradation in Organic Light-Emitting Devices: Mechanisms and Implications for the Design of New Materials. Adv. Mater. 2013, 25(15), 2114–2129.
20. Hong, M.; Ravva, M. K.; Winget, P.; Brédas, J. L. Effect of Substituents on the Electronic Structure and Degradation Process in Carbazole Derivatives for Blue OLED Host Materials. Chem. Mater. 2016, 28(16), 5791–5798.
21. Cui, L.-S.; Xie, Y.-M.; Wang, Y.-K.; Zhong, C.; Deng, Y.-L.; Liu, X.-Y.; Jiang, Z.-Q.; Liao, L.-S.; Cui, L.-S.; Xie, Y.-M.; Wang, Y.-K.; Deng, Y.-L.; Liu, X.-Y.; Jiang, Z.-Q.; Liao, L.-S.; Zhong, C. Pure Hydrocarbon Hosts for ≈100% Exciton Harvesting in Both Phosphorescent and Fluorescent Light-Emitting Devices. Adv. Mater. 2015, 27(28), 4213–4217.
22. Zhao, H.; Arneson, C. E.; Fan, D.; Forrest, S. R. Stable Blue Phosphorescent Organic LEDs That Use Polariton-Enhanced Purcell Effects. Nature 2023, 626(7998), 300–305.
23. Rault-Berthelot, J.; Poriel, C.; Justaud, F.; Barrière, F. Anodic Oxidation of Indenofluorene . Electrodeposition of Electroactive Poly(Indenofluorene). New J. Chem. 2008, 32(7), 1259–1266.
24. Thirion, D.; Poriel, C.; Barrière, F.; Métivier, R.; Jeannin, O.; Rault-Berthelot, J. Tuning the Optical Properties of Aryl-Substituted Dispirofluorenelndenofluorene Isomers through Intramolecular Excimer Formation. Org. Lett. 2009, 11(21), 4794–4797.
25. Poriel, C.; Métivier, R.; Rault-Berthelot, J.; Thirion, D.; Barrière, F.; Jeannin, O. A Robust Pure Hydrocarbon Derivative Based on the (2,1- b )-Indenofluorenyl Core with High Triplet Energy Level. ChemComm 2011, 47(42), 11703–11705.
26. Thirion, D.; Romain, M.; Rault-Berthelot, J.; Poriel, C. Intramolecular Excimer Emission as a Blue Light Source in Fluorescent Organic Light Emitting Diodes: A Promising Molecular Design. J. Mater. Chem. 2012, 22(15), 7149–7157.
27. Poriel, C.; Rault-Berthelot, J.; Thirion, D. Modulation of the Electronic Properties of 3π-2spiro Compounds Derived from Bridged Oligophenylenes: A Structure-Property Relationship. J. Org. Chem. 2013, 78(3), 886–898.
28. Romain, M.; Tondelier, D.; Vanel, J.-C.; Geffroy, B.; Jeannin, O.; Rault-Berthelot, lle; MØtivier, Rø.; Poriel, C.; Romain, M.; Jeannin, O.; Rault-Berthelot, J.; Poriel, C.; Tondelier, D.; Vanel, J.; Geffroy, B.; MØtivier, R. Dependence of the Properties of Dihydroindenofluorene Derivatives on Positional Isomerism: Influence of the Ring Bridging. Angew. Chem. Int. Ed. 2013, 52(52), 14147–14151.
29. Romain, M.; Thiery, S.; Shirinskaya, A.; Declairieux, C.; Tondelier, D.; Geffroy, B.; Jeannin, O.; Rault-Berthelot, J.; Métivier, R.; Poriel, C. Ortho-, Meta-, and Para-Dihydroindenofluorene Derivatives as Host Materials for Phosphorescent OLEDs. Angew. Chem. Int. Ed. 2015, 54(4), 1176–1180.
30. Poriel, C.; Rault-Berthelot, J. Dihydroindenofluorene Positional Isomers. Acc. Chem. Res. 2018, 51(8), 1818–1830.
31. Poriel, C.; Barrière, F.; Rault-Berthelot, J.; Thirion, D. Cyclization of Terphenyl-Bisfluorenols: A Mechanistic Study of the Regioselectvity. Chem. Eur. J. 2019, 25(45), 10689–10697.
32. Poriel, C.; Rault-Berthelot, J. Dihydroindenofluorenes as Building Units in Organic Semiconductors for Organic Electronics. Chem. Soc. Rev. 2023, 52(19), 6754–6805.
33. Lucas, F.; Ibraikulov, O. A.; Quinton, C.; Sicard, L.; Heiser, T.; Tondelier, D.; Geffroy, B.; Leclerc, N.; Rault-Berthelot, J.; Poriel, C. Spirophenylacridine-2,7-(Diphenylphosphineoxide)-Fluorene: A Bipolar Host for High-Efficiency Single-Layer Blue Phosphorescent Organic Light-Emitting Diodes. Adv. Opt. Mater. 2020, 8(2), 1901225.
34. Sicard, L. J.; Li, H. C.; Wang, Q.; Liu, X. Y.; Jeannin, O.; Rault-Berthelot, J.; Liao, L. S.; Jiang, Z. Q.; Poriel, C. C1-Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for High-Performance Blue Phosphorescent OLEDs. Angew. Chem. Int. Ed. 2019, 58(12), 3848–3853.
35. Poriel, C.; Quinton, C.; Lucas, F.; Rault-Berthelot, J.; Jiang, Z.-Q.; Jeannin, O. Spirobifluorene Dimers: Understanding How The Molecular Assemblies Drive The Electronic Properties. Adv. Funct. Mater. 2021, 31(43), 2104980.
36. Thiery, S.; Tondelier, D.; Declairieux, C.; Seo, G.; Geffroy, B.; Jeannin, O.; Rault-Berthelot, J.; Métivier, R.; Poriel, C. 9,9′-Spirobifluorene and 4-Phenyl-9,9′-Spirobifluorene: Pure Hydrocarbon Small Molecules as Hosts for Efficient Green and Blue PhOLEDs. J. Mater. Chem. C 2014, 2(21), 4156–4166.
37. Thiery, S.; Declairieux, C.; Tondelier, D.; Seo, G.; Geffroy, B.; Jeannin, O.; Métivier, R.; Rault-Berthelot, J.; Poriel, C. 2-Substituted vs 4-Substituted-9,9′-Spirobifluorene Host Materials for Green and Blue Phosphorescent OLEDs: A Structure–Property Relationship Study. Tetrahedron 2014, 70(36), 6337–6351.
38. Thiery, S.; Tondelier, D.; Declairieux, C.; Geffroy, B.; Jeannin, O.; Métivier, R.; Rault-Berthelot, J.; Poriel, C. 4-Pyridyl-9,9′-Spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs. J. Phy. Chem. C 2015, 119(11), 5790–5805.
39. Quinton, C.; Thiery, S.; Jeannin, O.; Tondelier, D.; Geffroy, B.; Jacques, E.; Rault-Berthelot, J.; Poriel, C. Electron-Rich 4-Substituted Spirobifluorenes: Toward a New Family of High Triplet Energy Host Materials for High-Efficiency Green and Sky Blue Phosphorescent OLEDs. ACS Appl. Mater. Interfaces 2017, 9(7), 6194–6206.
40. Poriel, C.; Rault-Berthelot, J. Structure–Property Relationship of 4-Substituted-Spirobifluorenes as Hosts for Phosphorescent Organic Light Emitting Diodes: An Overview. J. Mater. Chem. C 2017, 5(16), 3869–3897.
41. Sicard, L.; Quinton, C.; Peltier, J. D.; Tondelier, D.; Geffroy, B.; Biapo, U.; Métivier, R.; Jeannin, O.; Rault-Berthelot, J.; Poriel, C. Spirobifluorene Regioisomerism: A Structure–Property Relationship Study. Chem. Eur. J. 2017, 23(32), 7719–7727.
42. Wang, Q.; Lucas, F.; Quinton, C.; Qu, Y. K.; Rault-Berthelot, J.; Jeannin, O.; Yang, S. Y.; Kong, F. C.; Kumar, S.; Liao, L. S.; Poriel, C.; Jiang, Z. Q. Evolution of Pure Hydrocarbon Hosts: Simpler Structure, Higher Performance and Universal Application in RGB Phosphorescent Organic Light-Emitting Diodes. Chem. Sci. 2020, 11(19), 4887–4894.
43. Kong, F.-C.; Zhang, Y.-L.; Quinton, C.; McIntosh, N.; Yang, S.-Y.; Rault-Berthelot, J.; Lucas, F.; Brouillac, C.; Jeannin, O.; Cornil, J.; Jiang, Z.-Q.; Liao, L.-S.; Poriel, C. Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Light-Emitting Diodes: A New Molecular Design Approach. Angew. Chem. Int. Ed. 2022, 61(35), e202207204.
44. Poriel, C.; Sicard, L.; Rault-Berthelot, J. New Generations of Spirobifluorene Regioisomers for Organic Electronics: Tuning Electronic Properties with the Substitution Pattern. ChemComm 2019, 55(95), 14238–14254.
45. Poriel, C.; Rault-Berthelot, J.; Jiang, Z. Q. Are Pure Hydrocarbons the Future of Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes? Mater. Chem. Front. 2022, 6(10), 1246–1252.
46. Poriel, C.; Rault-Berthelot, J. Pure Hydrocarbons: An Efficient Molecular Design Strategy for the Next Generation of Host Materials for Phosphorescent Organic Light-Emitting Diodes. Acc. Mater. Res. 2022, 3(3), 379–390.
47. Wong, K. T.; Liao, Y. L.; Lin, Y. T.; Su, H. C.; Wu, C. C. Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence. Org. Lett. 2005, 7(23), 5131–5134.
48. Tian, G.; Jiang, Y.; Wu, P.; Huang, J.; Zou, Q.; Wang, Q.; Mu, H.; Su, J. Pure Hydrocarbon Host Materials Based on Spirofluorene with Excellent Performances for Green Phosphorescent Light-Emitting Devices. New J. Chem. 2016, 40(11), 9500–9506.
49. Zhuo, M. J.; Sun, W.; Liu, G. W.; Wang, J.; Guo, L. Y.; Liu, C.; Mi, B. X.; Song, J.; Gao, Z. Q. Pure Aromatic Hydrocarbons with Rigid and Bulky Substituents as Bipolar Hosts for Blue Phosphorescent OLEDs. J. Mater. Chem. C 2015, 3(35), 9137–9144.
50. Luo, Y.; Liu, Z.; Yang, G.; Wang, T.; Bin, Z.; Lan, J.; Wu, D.; You, J. Iridium(III)-Catalyzed Diarylation/Annulation of Benzoic Acids: Facile Access to Multi-Aryl Spirobifluorenes as Pure Hydrocarbon Hosts for High-Performance OLEDs. Angew. Chem. Int. Ed. 2021, 60(34), 18852–18859.
51. Sicard, L.; Brouillac, C.; Leclerc, N.; Fall, S.; Zimmerman, N.; Jeannin, O.; Rault-Berthelot, J.; Quinton, C.; Poriel, C. Influence of the Pendant Substituent at the C1 Position of a Spirobifluorene Scaffold on the Electronic Properties. Mater. Chem. Front. 2024, 8(5), 1349–1361.
52. Ari, D.; Yang, Y.-J.; Quinton, C.; Jiang, Z.-Q.; Zhou, D.-Y.; Poriel, C. Spirobifluorene Trimers: High Triplet Pure Hydrocarbon Hosts for Highly Efficient Blue Phosphorescent Organic Light-Emitting Diodes. Angew. Chem. Int. Ed. 2024, e202403066.
53. Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Spiro Compounds for Organic Optoelectronics. Chem. Rev. 2007, 107(4), 1011–1065.
54. Jeong, M.; Choi, I. W.; Yim, K.; Jeong, S.; Kim, M.; Choi, S. J.; Cho, Y.; An, J. H.; Kim, H. B.; Jo, Y.; Kang, S. H.; Bae, J. H.; Lee, C. W.; Kim, D. S.; Yang, C. Large-Area Perovskite Solar Cells Employing Spiro-Naph Hole Transport Material. Nat. Photonics 2022, 16(2), 119–125.
55. Qu, Y. K.; Zhou, D. Y.; Kong, F. C.; Zheng, Q.; Tang, X.; Zhu, Y. H.; Huang, C. C.; Feng, Z. Q.; Fan, J.; Adachi, C.; Liao, L. S.; Jiang, Z. Q. Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters. Angew. Chem. Int. Ed. 2022, 61(22), e202201886.
56. Qu, Y. K.; Zheng, Q.; Fan, J.; Liao, L. S.; Jiang, Z. Q. Spiro Compounds for Organic Light-Emitting Diodes. Acc. Mater. Res. 2021, 2(12), 1261–1271.
57. Ou, C. J.; Zhu, C.; Ding, X. H.; Yang, L.; Lin, J. Y.; Xie, L. H.; Qian, Y.; Xu, C. X.; Zhao, J. F.; Huang, W. Dimerization Effect of Fluorene-Based Semiconductors on Conformational Planarization for Microcrystal Lasing. J. Mater. Chem. C 2017, 5(22), 5345–5355.
58. Sicard, L.; Quinton, C.; Lucas, F.; Jeannin, O.; Rault-Berthelot, J.; Poriel, C. 1-Carbazolyl Spirobifluorene: Synthesis, Structural, Electrochemical, and Photophysical Properties. J. Phys. Chem. C 2019, 123(31), 19094–19104.
59. Rühle, V.; Lukyanov, A.; May, F.; Schrader, M.; Vehoff, T.; Kirkpatrick, J.; Baumeier, B.; Andrienko, D. Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors. J. Chem. Theory Comput. 2011, 7(10), 3335–3345.
60. Lin, K. H.; Prlj, A.; Corminboeuf, C. A Rising Star: Truxene as a Promising Hole Transport Material in Perovskite Solar Cells. J. Phys. Chem. C 2017, 121(39), 21729–21739.
61. Lin, K. H.; Corminboeuf, C. FB-REDA: Fragment-Based Decomposition Analysis of the Reorganization Energy for Organic Semiconductors. Phys. Chem. Chem. Phys. 2020, 22(21), 11881–11890.
62. Lin, K. H.; Corminboeuf, C. FB-ECDA: Fragment-Based Electronic Coupling Decomposition Analysis for Organic Amorphous Semiconductors. J. Phys. Chem. A 2020, 124(50), 10624–10634.
63. Lin, K. H.; Prlj, A.; Yao, L.; Drigo, N.; Cho, H. H.; Nazeeruddin, M. K.; Sivula, K.; Corminboeuf, C. Multiarm and Substituent Effects on Charge Transport of Organic Hole Transport Materials. Chem. Mater. 2019, 31(17), 6605–6614.
64. Zhang, Z.; Zhu, Y.; Wu, Y.; Zhao, C.; Meng, H. A Localized Planarization Strategy in Hole Mobility Modulation of Disordered Triphenylamine-Based Organic Semiconductors. Advanced Theory and Simulations 2021, 4(12), 2100236.
65. Mondal, A.; Paterson, L.; Cho, J.; Lin, K.-H.; van der Zee, B.; Wetzelaer, G.-J. A. H.; Stankevych, A.; Vakhnin, A.; Kim, J.-J.; Kadashchuk, A.; Blom, P. W. M.; May, F.; Andrienko, D. Molecular Library of OLED Host Materials—Evaluating the Multiscale Simulation Workflow. Chem. Phys. Rev. 2021, 2(3), 31304.
66. Herzhoff, R.; Negri, F.; Meerholz, K.; Fazzi, D. Revealing the Interplay between the Structural Complexity of Triphenylamine Redox Derivatives and Their Charge Transport Processes via Computational Modeling. J. Mater. Chem. C 2023, 11(35), 11969–11979.
67. Hasenburg, F. H.; Lin, K. H.; Van Der Zee, B.; Blom, P. W. M.; Andrienko, D.; Wetzelaer, G. J. A. H. Ambipolar Charge Transport in a Non-Fullerene Acceptor. APL Mater. 2023, 11(2), 21105.
68. Jorgensen, W. L.; Tirado-Rives, J. Potential Energy Functions for Atomic-Level Simulations of Water and Organic and Biomolecular Systems. Proc. Natl. Acad. Sci. 2005, 102(19), 6665–6670.
69. Dodda, L. S.; De Vaca, I. C.; Tirado-Rives, J.; Jorgensen, W. L. LigParGen Web Server: An Automatic OPLS-AA Parameter Generator for Organic Ligands. Nucleic acids research 2017, 45(W1), W331–W336.
70. Manz, T. A.; Limas, N. G. Introducing DDEC6 Atomic Population Analysis: Part 1. Charge Partitioning Theory and Methodology. RSC Adv. 2016, 6(53), 47771–47801.
71. Tkatchenko, A.; Scheffler, M. Accurate Molecular van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102(7), 073005.
72. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; J. V. Ortiz; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Jr., J. E. P.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision B.01. 2016, Gaussian, Inc., Wallingford CT.
73. Martinez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30(13), 2157–2164.
74. Lin, K. H.; Paterson, L.; May, F.; Andrienko, D. Glass Transition Temperature Prediction of Disordered Molecular Solids. Npj Comput. Mater. 2021, 7(1), 1–7.
75. Marcus, R. A. Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1993, 32(8), 1111–1121.
76. Nelsen, S. F.; Blackstock, S. C.; Kim, Y. Estimation of Inner Shell Marcus Terms for Amino Nitrogen Compounds by Molecular Orbital Calculations. J. Am. Chem. Soc. 1987, 109(3), 677–682.
77. Geng, H.; Niu, Y.; Peng, Q.; Shuai, Z.; Coropceanu, V.; Brédas, J. L. Theoretical Study of Substitution Effects on Molecular Reorganization Energy in Organic Semiconductors. J. Chem. Phys. 2011, 135(10), 104703.
78. Reimers, J. R. A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J. Chem. Phys. 2001, 115(20), 9103-9109.
79. Sutton, C.; Sears, J. S.; Coropceanu, V.; Brédas, J. L. Understanding the Density Functional Dependence of DFT-Calculated Electronic Couplings in Organic Semiconductors. J. Phys. Chem. Lett. 2013, 4(6), 919–924.
80. Gajdos, F.; Valner, S.; Hoffmann, F.; Spencer, J.; Breuer, M.; Kubas, A.; Dupuis, M.; Blumberger, J. Ultrafast Estimation of Electronic Couplings for Electron Transfer between Pi;-Conjugated Organic Molecules. J. Chem. Theory Comput. 2014, 10(10), 4653-4660.
81. Kubas, A.; Hoffmann, F.; Heck, A.; Oberhofer, H.; Elstner, M.; Blumberger, J. Electronic Couplings for Molecular Charge Transfer: Benchmarking CDFT, FODFT, and FODFTB against High-Level Ab Initio Calculations. J. Chem. Phys. 2014, 140(10), 104105.
82. Mavros, M. G.; Van Voorhis, T. Communication: CDFT-CI Couplings Can Be Unreliable When There Is Fractional Charge Transfer. J. Chem. Phys. 2015, 143(23), 231102.
83. Gillet, N.; Berstis, L.; Wu, X.; Gajdos, F.; Heck, A.; De La Lande, A.; Blumberger, J.; Elstner, M. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level. J. Chem. Theory Comput. 2016, 12(10), 4793–4805.
84. Kohn, J. T.; Gildemeister, N.; Grimme, S.; Fazzi, D.; Hansen, A. Efficient Calculation of Electronic Coupling Integrals with the Dimer Projection Method via a Density Matrix Tight-Binding Potential. J. Chem. Phys. 2023, 159(14), 144106.
85. Hafizi, R.; Elsner, J.; Blumberger, J. Ultrafast Electronic Coupling Estimators: Neural Networks versus Physics-Based Approaches. J. Chem. Theory Comput. 2023, 19(13), 4232–4242.
86. Baumeier, B.; Kirkpatrick, J.; Andrienko, D. Density-Functional Based Determination of Intermolecular Charge Transfer Properties for Large-Scale Morphologies. Phys. Chem. Chem. Phys. 2010, 12(36), 11103–11113.
87. Thole, B. T. Molecular Polarizabilities Calculated with a Modified Dipole Interaction. Chem. Phys. 1981, 59(3), 341–350.
88. Lukyanov, A.; Andrienko, D. Extracting Nondispersive Charge Carrier Mobilities of Organic Semiconductors from Simulations of Small Systems. Phys. Rev. B - Condens. Matter Mater. Phys. 2010, 82(19), 193202.
89. Ivanov, M. V.; Talipov, M. R.; Boddeda, A.; Abdelwahed, S. H.; Rathore, R. Hückel Theory + Reorganization Energy = Marcus-Hush Theory: Breakdown of the 1/n Trend in π-Conjugated Poly-p-Phenylene Cation Radicals Is Explained. J. Phys. Chem. C 2017, 121(3), 1552–1561.
90. Nikitenko, V. R.; Sukharev, V. M. Transport Level in Disordered Organics: Correlated Energetic Disorder in Dipole Glass Model. J. Phys. Conf. Ser. 2016, 741(1), 012080.
91. Blakesley, J. C.; Castro, F. A.; Kylberg, W.; Dibb, G. F. A.; Arantes, C.; Valaski, R.; Cremona, M.; Kim, J. S.; Kim, J. S. Towards Reliable Charge-Mobility Benchmark Measurements for Organic Semiconductors. Org. Electron. 2014, 15(6), 1263–1272.
92. Sivula, K. Improving Charge Carrier Mobility Estimations When Using Space-Charge-Limited Current Measurements. ACS Energy Lett. 2022, 7(6), 2102–2104.