研究生: |
周峻名 |
---|---|
論文名稱: |
Molecular Mechanism of Symplectoteuthis Bioluminescence Using Coelenterazine Analogs |
指導教授: |
磯部稔
Minoru Isobe 汪炳鈞 Uang, Biing-Jiun |
口試委員: |
洪上程
Hung, Shu-Chen 陳淑慧 Chen, Shu-Hui 廖俊臣 Liao, Chun-Chen |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 腔腸素 、脫氫腔腸素 、生物冷光 、發光蛋白 |
外文關鍵詞: | coelenterazine, photoprotein, symplectin |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在發光蛋白(photoprotein)中,symplectin是少數在結合位置與活化位置皆用共價鍵連接脫氫腔腸素(DCL),此種鍵結是半胱氨酸的SH基團進行共軛加成所產生的。此發光蛋白在產生冷光前,其發色團(chromophore)分子會先從結合位置移至活化部位Cys-390。
本研究的第一部分是開發高效率的合成方式以獲得烯醇酮(enol-aldehyde)的等同物:酮縮醛(keto-acetal 2-6a, 2-20b, 2-20c)與酮碸(keto-sulfone 2-24b, 2-24c),因為烯醇酮是獲得腔腸素與其類同物等此類螢光素的重要片段。再將較佳的縮合反應應用在氨基吡嗪與各式酮縮醛或酮碸上,相較於以往氨基吡嗪與烯醇酮的反應,此種改良後的合成法可獲得較多量的腔腸素與其類同物。
第二部份描述在使用具有8-(4'-甲氧苯基)-與8-(2'-萘基)-的發色團與含有天然發色團的symplectin作用後,分析螢光的變化來研究發色團與發光蛋白的動態結合。此實驗中,我們在微酸性與可產生冷光的條件下(pH=7.8)觀察螢光的變化,並透過液相層析的方法分析冷光發生後的萃出物,證實無法產生螢光的萘基類同物在pH=6.0時可取代發光蛋白中原有的腔腸素,並與螢光蛋白形成鍵結。
第三部份,利用半胱氨酸加成物2-43b與水母素(aequorin)反應以模擬脫氫腔腸素與symplectin的反應機構。在結果中發現,分子內的過氧基的氧化反應會削減冷光的發生,透過此反應並佐以先前的研究,確立了半胱氨酸加成物2-43b中的2'碳上的立體位向。
Symplectin, which is one of the few photoproteins, forms covalent bonds with the dehydrocoelenterazine (DCL) at the binding sites and the active site. This binding takes place through the SH’s of the cysteine residues via conjugate addition reaction. This photoprotein contains the chromophore molecules at the binding cite first, and then moves to the active cite Cys-390 for the luminescence.
In the first part of this dissertation, we developed an efficient synthetic route to yield keto-acetal (2-6a, 2-20b, and 2-20c) and keto-sulfone (2-24b and 2-24c) as the equivalent of enol-aldehyde, which was the key segment toward coelenterazine (CL) and its analogs as luminescent molecules. The improved synthesis of coelenterazine and its analogs employed an advanced condensation with the aminopyrazines using various keto-acetal and keto-sulfone segments, which resulted in much higher yields to give the final imidazopyrazinone heterocycles than the previous method using enol-aldehyde.
In the second part, we focus on these dynamic aspects of the chromophore using the natural photoprotein by analyzing the fluorescence changing of the DCL chromophores analogs with 8-(4'-methoxyphenyl)- or 8-(2'-naphthyl)-group and 2-(2’,4’-difluorophenyl)-group. Exchanges of these chromophores were monitored the fluorescence at slightly acidic media and also from the luminescence function observed at the optimum pH 7.8. The non-fluorescent naphthyl analogs was even proven to make the covalent bond formation at pH 6.0 and evidently to obtain the corresponding luminescent product amide by liquid chromatographic detection from the spent solutions.
In the third part, the cysteine adducts 2-43b were treated to aequorin as the model of DCL in symplectin. This result showed us that the intramolecular peroxide oxidation happened on cysteine residue and lead decrease of bioluminescence. The intramolecular peroxide oxidation combined with the previous study lead us to determinate the absolute configuration of C2' position in cysteine adducts.
1-1. (a) O. Shimomura, Bioluminescence, Chemical Principles and Methods. World Scientific Publishing C. Pte. Ltd.: Hackensack, NJ 07601, USA., 2006; (b) J. F. Head, S. Inouye, K. Teranishi, and O. Shimomura, Nature 2000, 405, 372-376.
1-2. S. B. Kim, M. Awais, M. Sato, Y. Umezawa, and H. Tao, Anal. Chem. 2007, 79, 1874-1870.
1-3. (a) E. H. White, N. Suzuki, and J. D. Miano, J. Org. Chem. 1978, 43, 2366-2369; (b) E. H. White, M. G. Steinmetz, J. D. Miano, P. D. Wildes, and R. Morland, J. Am. Chem. Soc. 1980, 102, 3199-3208.
1-4. R. Shinde, J. Perkins, and C. H. Contag, Biochem. 2006, 45, 11103-11112.
1-5. S. H. D. Haddock, M. A. Moline, and J. F. Case, Annu. Rev. Mar. Sci. 2010, 2, 443-493.
1-6. S. Inoue, S. Sugiura, H. Kakoi, K. Hasizume, T. Goto, and H. Iio, Chem. Lett. 1975, 141-144.
1-7. T. Goto, H. Iio, S. Inoue, and H. Kakoi, Tetrahedron Lett. 1974, 15, 2321-2324.
1-8. O. Shimomura, and K. Teranishi, Luminescence 2000, 15, 51-58.
1-9. F. I. Tsuji, and G. B. Leisman, Proc. Natl. Acad. Sci. USA 1981, 78, 6719-6723.
1-10. H. Takahashi, and M. Isobe, Bioorg. Med. Chem. Lett. 1993, 3, 2647-2652.
1-11. M. Isobe, H. Takahashi, K. Usami, M. Hattori, and Y. Nishigohri, Pure Appl. Chem. 1994, 66, 765-772.
1-12. S. Inoue, H. Taguchi, M. Murata, H. Kakoi, and T. Goto, Chem. Lett. 1977, 6, 259-262.
1-13. V. Kongjinda, Y. Nakashima, N. Tani, M. Kuse, T. Nishikawa, C.-H. Yu, N. Harada, and M. Isobe, Chem. Asian J. 2011, 6, 2080-2091.
1-14. (a) K. Usami, and M. Isobe, Tetrahedron Lett. 1995, 36, 8613-8616; (b) K. Usami, and M. Isobe, Tetrahedron 1996, 52, 12061-12090; (c) K. Usami, and M. Isobe, Chem. Lett. 1996, 25, 215-216.
1-15. (a) E. V. Eremeeva, S. V. Markova, W. J. H. v. Berkel, and E. S. Vysotski, J. Photochem. Photobiol. B: Biology 2013, 127, 133-139; (b) E. V. Eremeeva, L. P. Burakova, V. V. Krasitskaya, A. N. Kudryavtsev, O. Shimomura, and L. A. Frank, Photochem. Photobiol. Sci. 2014, 13, 541-547.
1-16. (a) M. Isobe, M. Kuse, N. Tani, T. Fujii, and T. Matsuda, Proc. Jpn. Acad., Ser. B 2008, 84, 386-392; (b) I. Doi, M. Kuse, T. Nishikawa, and M. Isobe, Bioorg. Med. Chem. 2009, 17, 3399-3404.
1-17. Y. Kishi, H. Tanino, and T. Goto, Tetrahedron Lett. 1972, 13, 2747-2750.
1-18. M. Adamczyk, S. R. Akireddy, D. D. Johnson, P. G. Mattingly, Y. Pan, and R. E. Reddy, Tetrahedron 2003, 59, 8129-8142.
1-19. M. Kuse, N. Kondo, Y. Ohyabu, and M. Isobe, Tetrahedron 2004, 60, 835-840.
1-20. N. Kondo, M. Kuse, T. Mutarapat, N. Thasana, and M. Isobe, Heterocycles 2005, 65, 843-856.
1-21. M. Mosrin, T. Bresser, and P. Knochel, Org. Lett. 2009, 11, 3406-3409.
1-22. M. Isobe, T. Fujii, M. Kuse, K. Miyamoto, and K. Koga, Tetrahedron 2002, 58, 2117-2126.
1-23. 宋心琦, 周福添, and 劉劍波, Photochemistry. 五南圖書: 2004.
2-1. (a) S. Inoue, S. Sugiura, H. Kakoi, K. Hasizume, T. Goto, and H. Iio, Chem. Lett. 1975, 141-144; (b) S. Inoue, H. Kakoi, and T. Goto, Tetrahedron Lett. 1976, 17, 2971-2974.
2-2. (a) M. Adamczyk, S. R. Akireddy, D. D. Johnson, P. G. Mattingly, Y. Pan, and R. E. Reddy, Tetrahedron 2003, 59, 8129-8142; (b) M. Mosrin, T. Bresser, and P. Knochel, Org. Lett. 2009, 11, 3406-3409.
2-3. L. I. Smith, and J. Nichols, J. Org. Chem. 1941, 06, 489-506.
2-4. Y. Kishi, H. Tanino, and T. Goto, Tetrahedron Lett. 1972, 13, 2747-2750.
2-5. (a) E. H. White, M. G. Steinmetz, J. D. Miano, P. D. Wildes, and R. Morland, J. Am. Chem. Soc. 1980, 102, 3199-3208; (b) E. Negishi, L. F. Valente, and M. Kobayashi, J. Am. Chem. Soc. 1980, 102, 3298-3299; (c) E. Negishi, Acc. Chem. Res. 1982, 15, 340-348; (d) M. Kobayashi, and E. Negishi, J. Org. Chem. 1980, 45, 5223-5225.
2-6. (a) C. Wu, K. Kawasaki, S. Ohgiya, and Y. Ohmiya, Tetrahedron Lett. 2006, 47, 753-756; (b) H. Nakamura, D. Takeuchi, and A. Murai, Synlett 1995, 1227-1228.
2-7. D. Chan. Master thesis, NTHU, 2010.
2-8. (a) M.-I. Lin. Master thesis, NTHU, 2011; (b) Y.-W. Tung. Master thesis, NTHU, 2012.
2-9. V. Kongjinda, Y. Nakashima, N. Tani, M. Kuse, T. Nishikawa, C.-H. Yu, N. Harada, and M. Isobe, Chem. Asian J. 2011, 6, 2080-2091.
2-10. J. F. Head, S. Inouye, K. Teranishi, and O. Shimomura, Nature 2000, 405, 372-376.
2-11. (a) K. Usami, and M. Isobe, Tetrahedron Lett. 1995, 36, 8613-8616; (b) K. Usami, and M. Isobe, Tetrahedron 1996, 52, 12061-12090; (c) K. Usami, and M. Isobe, Chem. Lett. 1996, 25, 215-216.
2-12. O. Shimomura, and B. M. Y. Kishi, Biochem. J. 1989, 261, 913-920.
2-13. (a) M. Isobe, T. Fujii, M. Kuse, K. Miyamoto, and K. Koga, Tetrahedron 2002, 58, 2117-2126; (b) M. Kuse, I. Doi, N. Kondo, Y. Kageyama, and M. Isobe, Tetrahedron 2005, 61, 5754-5762; (c) M. Isobe, M. Kuse, N. Tani, T. Fujii, and T. Matsuda, Proc. Jpn. Acad., Ser. B 2008, 84, 386-392.