研究生: |
林志龍 Lin, Chih Lung |
---|---|
論文名稱: |
肌紅蛋白熱變性之旋光量測研究 Thermal Denaturation Study of Myoglobin using Optical Heterdyne Polarimeter |
指導教授: |
吳見明
Wu, Chien Ming |
口試委員: |
何淳雪
Ho, Chwen Shell 崔豫笳 Cui, Yu Jia |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 肌紅蛋白 、旋光 |
外文關鍵詞: | Myoglobin, Optical Rotation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,有許多的量測方法皆可用來研究蛋白質在加熱後其結構之變化,例如差分掃描法、圓偏振二色光譜法、X-ray 晶格繞射法等等,但這些方法皆無法即時量測出蛋白質水溶液在加熱後結構的快速變化。因此本研究使用具有放大旋光訊號效果約41倍的自製光學外差式偏光儀,以及精密的熱電致冷晶片溫度控制器,設計了實驗來詳細探討肌紅蛋白溶液在加熱後的熱變性現象。
實驗結果指出,肌紅蛋白水溶液再加熱至約75°C時,有少部分的蛋白質結構會受到破壞,但此時蛋白質結構是屬於可逆的,在降溫後其結構會因為蛋白質之復性作用而慢慢恢復。而隨著加熱溫度到達75.9±0.1°C,其結構會由可逆逐漸轉變為部分可逆。當溫度加熱到77.5°C再冷卻至25°C時,約80%的結構會恢復。若溫度加熱到80°C再冷卻至25°C時,只剩下52%的結構會恢復。再將溫度加熱到85°C再冷卻至25°C時,會有45%的結構恢復。肌紅蛋白結構主要在75.9°C 到80.4°C 溫度區段受到破壞,當加熱溫度超過80.4°C 時,蛋白質復性作用會隨著溫度升高而減少。
Recently, many measurement methods have been used to study structural changes of proteins after heating, such as differential scanning calorimetry method, circularly polarized dichroism spectroscopy, X-ray diffraction crystallography method, etc. However, it is difficult for these methods to monitor the denaturation process of myoglobin solution in real time. In this study, a self-assembled optical heterodyne polarimeter capable of amplifying the optical rotation signal to 41-fold, and a precision thermoelectric cooler (TEC) were used to study the thermal denaturation phenomenon of myoglobin solution after heating.
Our results indicate that the protein structure of myoglobin solution has about 5% destroyed by heating to 75℃, however , by cooling down , the protein structure is reversible at this time because of protein renaturation role. When myoglobin solution was heated to about 75.9±0.1°C,its protein structure was gradually changed from reversible to partially reversible. As the myoglobin solution was heated to 77.5℃ and then cooled down to room temperature, about 80% of proteins reversed to original protein structure. Furthermore, as the myoglobin was heated to 80℃ and 85℃, there was 52% and 45% , respectively , proteins to be reversible to the original form. The helical structure of myoglobin were mostly destroyed between 75.9 and 80.4℃. Upon cooling to 25℃ from tempertures above 80.4℃,the recovered helical structure decreased with rise of temperature before cooling.
[1] L. J. Kagan, Myoglobin. Columbia Series in Molecular Biology, Columdia University Press, 1973.
[2] J. C. Kendrew, R. E. Dickerson, B. E. Strandberg, R. G. Hart, D. R. Davies, “Structure of myoglobin,” Nature, vol.185, pp. 422-427, 1960.
[3] P. Attri, I. Jha, E. H. Choi, P. Venkatesu, “Variation in the structural changes of myoglobin in the presence of several protic ionic liquid,” International Journal of Biological Macromolecules, vol.69, pp. 114-123, 2014.
[4] S. V. Evan, G. D. Brayer, “High-Resolution study of the three dimensional structure of horse heart metmyoglobin.,” J. Mol. Biol, vol.213, p. 885, 1990.
[5] T. Takano, “Structure of myoglobin refined at 2.0 Å resolution. II. Structure of deoxymyoglobin from sperm whale,” J. Mol. Biol., vol.110, pp. 569-584, 1977.
[6] S. Chanthai, M. S. Ogawa, T. Tamiya, T. Tsuchiya, “Studies on thermal denaturation of fish myoglobins using differential scanning calorimetry, circular dichroism, and tryptophan fluorescence,” Fisheries science, vol.62, pp. 927-932, 1996.
[7] Y. H. Chen, J. Y. Yang, M. M. Hugo, “Determination of the Secondary Structure of Proteins by Circular Dichroism and Optical Rotatory Dispersion,” BIOCHEMISTRY, vol.11, pp. 4120-4131, 1972.
[8] E. N. Baker, R. E. Hubbard, “Hydrogen bonding in globular protein,” Progress in Biophysics and Molecular Biology, vol.44, pp. 97-179, 1984.
[9] T. Kongraksawech, “Characterization by optical methods of the heat denaturation of bovine serum albumin as affected by protein concentration, pH, ionic strength and sugar concentration,” Food Science and Technology, 2006.
[10] J. P. Attfield, A. W. Sleight, A. K. Cheettham, “Structure determination of CrO4 from powder synchrotron X-ray data,” Nature, vol.322, pp. 620-622, 1986.
[11] R. C. Mackenzie, “Nomenclature in Thermal-Analysis,” Thermochimica Acta, vol.28(1), pp. 1-6, 1979.
[12] R. H. Stevan, A. H. Wayne, “X-ray Crystal Structure of a Recombinant Human Myoglobin Mutant 2.8 A Resolution,” J. Mol. Biol, vol.213, pp. 215-218, 1990.
[13] R. C. Mackenzie, “Nomenclature in Thermal-Analysis,” Thermochimica Acta, vol.28(1), pp. 1-6, 1979.
[14] P. Talele, N. Kishore, “Thermodynamic analysis of partially folded states of myoglobin in presence of 2,2,2-trifluoroethanol.,” J.Chem.Thermodynamics, vol.84, pp. 50-59, 2014.
[15] D. J. Caldwell, H. Eyring, “The Theory of Optical Activity,” New York : Wiley-Interscience, 1971.
[16] E. Hecht, Optics, New York: Addision Wesley, 2002.
[17] T. W. King, G. L. Cote, “Closed-loop polarimetric glucose sensing using the pockels effect,” Proceedings of the Annual International Conference of the Ieee Engineering in Medicine and Biology Society, vol.14, pp. 161-162, 1992.
[18] M. P. Silverman, “Experimental Configurations Using Optical-Phase Modulation to Measure Chiral Asymmetries in Light Specularly Reflected from a Naturally Gyrotropic Medium,” Journal of Optical Society of America a-Optics Image Science and Vision, vol.5, pp. 1852-1862, 1998.
[19] A. J. Majeeski, “Effects of ultraviolet radiation on the type-I collagen protein triple helical structure: A method for measuring structural changes through optical activity.,” Physical Review E, vol.65, pp. 319-328, 2002.
[20] 陳欣樂, “小牛血清蛋白熱變性之旋光研究,” 國立清華大學生醫工程與環境科學所, 2009.
[21] R. G. Eckenhoff, R. Pidikiti, S. Reddy, “Anesthetic Stabilixation of Protein Intermediates: Myoglobin and Halothane.,” Biochemistry, vol.40, pp. 10819-10824, 2001.
[22] Z. Y. Park, D. H. Russell, “Thermal Denaturation: A Useful Technique in Peptide Mass Mapping.,” Analytical Chemistry, vol.72, pp. 2667-2670, 2000.
[23] M. Fandrich, M. A. Fletcher, C. M. Dobson, “Amyloid fibrils from muscle myoglobin,” Nature, vol.410, pp. 165-166, 2001.
[24] F. G. Parak, G. U. Nienhaus, “Myoglobin, a Paradigm in the Study of Protein Dynamics.,” A EUROPEAN JOURNAL CHEMPHYSCHEM, vol.3, pp. 249-254, 2002.
[25] Y. Moriyama, H. Takeda, “Critical Temperature of Secondary Structure Change of Myoglobin in Thermal Denaturation op to 130 and Effect of Sodium Sulfate on the Change,” J. Phys. Chem, vol.114, pp. 2430-2434, 2010.
[26] T. H. Theodore, H. Jaillet, “Structural Stability and Solvent Denaturation of Myoglobin,” Science, vol.163, pp. 282-285, 1969.