簡易檢索 / 詳目顯示

研究生: 吳齊軒
論文名稱: 類流感高峰預測之相關議題
Some Issues on Peak Prediction for Influenza-Like Illness
指導教授: 徐南蓉
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 49
中文關鍵詞: 類流感ARIMA model尖峰預測非線性迴歸
外文關鍵詞: influenza, ARIMA model, peak prediction, nonlinear regression
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we review some models related to Influenza-Like Illness(ILI) and
    investigate the need of peak prediction in practice and surveillance. By intuition, the
    historical data provide a good predictor at the beginning, but become worthless at the
    end of current season. We propose a nonlinear regression model to predict peak with
    empirical prior as a penalize term which is a link between historical data and current
    observation. Our method performs well six weeks before peak occurred.


    Contents 1. Introduction ....................................................................................................................... 1 2. Exploratory Data Analysis ................................................................................................ 4 3. Modeling ILI Data ........................................................................................................... 10 3.1 New Definition for Peak Time ............................................................................... 10 3.2 Regression Model .................................................................................................. 13 3.3 SARIMA Models ................................................................................................... 14 3.4 Nonlinear Regression Model ......................................................................................... 16 4. Result ............................................................................................................................... 24 4.1 Result of Peak Estimation ............................................................................................. 24 4.2 Result of ILI Incidence Prediction ................................................................................ 28 5. Conclusion and Discussion .............................................................................................. 31 Reference ................................................................................................................................. 33 Appendix ................................................................................................................................. 35 A. Unimodal regression and MLE N .................................................................... 35 B. Track of Estimation .................................................................................................... 43 C. Nonparametric Peak Detection ................................................................................... 49

    Andersson, E., Bock, D., and Frisén, M. (2008). Modeling influenza incidence for the
    purpose of on-line monitor-ing. Statistical Methods in Medical Research 17,
    421-438.
    Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972).
    Statistical Inference under Order Restrictions. Wiley, London.
    Bock, D., Andersson, E., and Frisén, M. (2008). Statistical Surveillance of Epidemics:
    Peak Detection of Influenza in Sweden. Biometrica 50, 71-85.
    Box G. E. P., and Jenkins G. M. (1976). Time series analysis: Forecasting and control.
    San Francisco: Holden Days.
    Choi, K., and Thacker S. B. (1982). Mortality during Influenza Epidemics in the
    United-States, 1967-1978. American Journal of Public Health. 72, 1280-1283.
    Frisén, M. and de Maré, J. (1991). Optimal Surveillance. Biometrika 78, 271-280.
    Le Strat, Y. and Carrat, F. (1999). Monitoring epidemiologic surveillance data using
    hidden Markov models. Statistics in Medicine 18, 3463-3478.
    Lowen, A. C., Mubareka, S., Steel, J., and Palese, P. (2007) Influenza virus
    transmission is dependent on relative humidity and temperature. PLoS Pathog
    3(10), 1470-1476.
    Mollison, D., Isham, V., and Grenfell, B. (1994). Epidemics: Models and Data.
    Journal of Royal Statistical Society Series A-Statistics in Society. 157, 115-149.
    Quénel, P. and Dab, W. (1998). Influenza A and B epidemic criteria based on
    time-series analysis of health services surveillance data. European Journal of
    Epidemiology 14, 275-285.
    Reichert, T. A., Simonsen, L., Sharma, A., Pardo, S. A., Fedson, D. S., Miller, M. A.
    (2004). Influenza and the Winter Increase in Mortality in the United States.
    American Journal of Epidemiology 160, No.5 492-502.
    Robertson, T., Wright, F. T., and Dykstra, R. L. (1988). Order Restricted Statistical
    Inference. Wiley, New York.
    Serfling R. (1963). Methods for current statistical analysis of excess
    pneumonia-influenza deaths. Public Health Reports 78, 494–506.
    Shiryaev, A. N. (1963). On Optimum methods in quickest detection problems. Theory
    of Probability and its Applications 8, 22-46.
    Sonesson, C. and Bock, D. (2003). A review and discussion of prospective statistical
    surveillance in public health. Journal of the Royal Statistical Society A 166, 5-21.
    Turner, T. R., and Wollan P.C. (1997). Locating a maximum using isotonic regression.
    Computational Statistics & Data Analysis 25, 305-320.
    Watier, L. and Richardson, S. (1995). Modelling of an epidemiological time series by
    a threshold autoregressive model. The Statistician 44, No. 3, 353-364.
    World Health Organization. (2007). The world health report 2007 : a safer future :
    global public health security in the 21st century. World Health Organization
    45-48.
    行政院衛生署疾病管制局:季節性流感防治工作指引 2008 年。17-20 頁。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE