研究生: |
鄭博蔭 Cheng, Po-Yin |
---|---|
論文名稱: |
以電鍍法固定四氧化三鈷/碳複合奈米方塊於導電基材作為酸性電解水產氧電極 Electrochemically Fixing Co3O4/C Composite Nanocubes onto FTO as Electrodes for Oxygen Evolution Reaction in Acidic Media |
指導教授: |
呂世源
Lu, Shih-Yuan |
口試委員: |
蔡德豪
Tsai, De-Hao 李建良 Lee, Chien-Liang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 酸性電解水 、產氧觸媒 、四氧化三鈷 、奈米材料 |
外文關鍵詞: | water splitting, OER, cobalt oxide, nanomaterials |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化石燃料的枯竭以及全球暖化現象加劇,促使乾淨的替代性能源成為當前急需研究之項目,而電化學分解水產氫產氧因為其產物氫氣具有高能量密度,且燃燒後僅會產生純淨的水與熱量,因此無疑是最受矚目的研究之一。到目前為止,產氫的最佳觸媒為白金(Pt),而產氧的最佳觸媒為二氧化釕(RuO2)和二氧化銥(IrO2)。然而,上述這些貴重金屬在地殼上因其蘊含量極為稀少,價格居高不下,因此難以大量用來製造觸媒,在商業化發展上有諸多限制。因此,研究出以非貴重金屬為基底之電化學觸媒為是電化學產氫產氧領域中最重要的課題。而電化學分解水中,產氧反應是速率決定步驟,因此又以產氧反應之研究更為重要。
在產氧反應中,鐵鈷錳等過渡金屬及其衍生物被視為最有潛力之非貴重金屬催化劑,並且因地殼中含量豐富且價格低廉等原因,使其被應用在許多電化學領域之中。本研究中,使用鈷氰化鉀、醋酸鈷及檸檬酸鈉作為前驅物,並改變其中檸檬酸鈉添加量,成功合成出不同尺寸的鈷之類普魯士藍(Co-Prussian blue analogues, Co-PBA)。接著將鈷之類普魯士藍以滴落塗佈法(drop-casting)分散於經前處理過的氟摻雜氧化錫玻璃(Fluorine-doped Tin Oxide, FTO)上,並以電鍍法固定觸媒前驅物,再通過空氣環境下高溫氧化後,鈷之類普魯士藍轉化成由氮摻雜之碳層包覆之四氧化三鈷奈米方塊(Co3O4@N-C),作為進行電催化分解水之產氧電極。
經過電鍍時間、氧化溫度及觸媒質量負載之參數調整,我們得到一最佳化參數之電極。在電化學表現上,於0.5 M H2SO4中之產氧反應達10 mA/cm2電流密度所需過電位(overpotential)為465 mV,塔佛斜率(Tafel slope)為164 mV/dec,並且可在10 mA/cm2的電流密度中穩定至少12小時,表現出其良好的穩定性,期許能在未來應用於商業發展上,為地球發展綠色能源貢獻一份微薄的努力。
Because of fossil fuels depletion and global warming, development of clean alternative renewable energy has been considered as the first priority for everlasting development of mankind on Earth. Hydrogen production through electrochemical water splitting is undoubtedly the most promising technology, because hydrogen possesses high energy densities and produces only water and heat after combustion. Besides, the other product of water splitting is oxygen, which is also a useful gaseous chemical. Until now, the most effective catalyst for electrolytic hydrogen production is platinum (Pt), and the best catalyst for electrolytic oxygen production is ruthenium dioxide (RuO2) or iridium dioxide (IrO2). However, the scarcity and extremely high cost of Pt, Ru, and Ir limit their applications in large scale hydrogen production. Therefore, development of non-precious-metal based catalysts for electrolytic water splitting is in critical demand, especially the development of catalysts for the oxygen evolution reaction (OER), which is the bottleneck reaction in electrochemical water splitting.
Transition metals, including iron (Fe), cobalt (Co), and manganese (Mn), and their derivatives are considered as promising catalysts for OER in acidic media because they are Earth-abundant and low cost. In this study, we used potassium hexacyanocobaltate(III), cobalt(II) acetate tetrahydrate, and trisodium citrate dihydrate as precursors to synthesize Co-Prussian blue analogues (Co-PBA). The size of Co-PBA was controlled with addition amounts of trisodium citrate dihydrate. The Co-PBA was drop-cast onto a pre-treated FTO, and fixed on the FTO with an electrodeposition method. Subsequently, the Co-PBA was converted into N-doped carbon coated Co3O4 nanocubes with calcination in air to serve as an electrode for the OER
The N-doped carbon coated Co3O4 nanocubes based electrode was optimized with electrodeposition time, calcination temperature, and catalyst mass loading. Electrochemical performances of the catalyst electrode were evaluated in a 0.5 M H2SO4 electrolyte. The Co3O4@N-C/FTO electrode achieved an overpotential of 465 mV at the current density of 10 mA/cm2, and a Tafel slope of 164 mV/dec. Besides, for stability tests, Co3O4@N-C/FTO remained stable for at least 12 hours at a current density of 10 mA/cm2, indicating the good stability of the catalyst electrode.
1. Janani, G.; Yuvaraj, S.; Surendran, S.; Chae, Y.; Sim, Y.; Song, S. J.; Park, W.; Kim, M. J.; Sim, U., Enhanced bifunctional electrocatalytic activity of Ni-Co bimetallic chalcogenides for efficient water-splitting application. J. Alloy. Compd. 2020, 846, 13.
2. Hafizi, A.; Rahimpour, M. R.; Hassanajili, S., Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier. Appl. Energy 2016, 165, 685-694.
3. Deluga, G. A.; Salge, J. R.; Schmidt, L. D.; Verykios, X. E., Renewable hydrogen from ethanol by autothermal reforming. Science 2004, 303 (5660), 993-997.
4. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46 (2), 337-365.
5. Dechialvo, M. R. G.; Chialvo, A. C., HYDROGEN EVOLUTION REACTION - ANALYSIS OF THE VOLMER-HEYROVSKY-TAFEL MECHANISM WITH A GENERALIZED ADSORPTION MODEL. J. Electroanal. Chem. 1994, 372 (1-2), 209-223.
6. Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y., Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes. J. Electrochem. Soc. 2010, 157 (11), B1529-B1536.
7. Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L., Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136-157.
8. Reier, T.; Nong, H. N.; Teschner, D.; Schlogl, R.; Strasser, P., Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts. Adv. Energy Mater. 2017, 7 (1), 18.
9. Jamesh, M. I.; Sun, X. M., Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting - A review. J. Power Sources 2018, 400, 31-68.
10. Wang, Z. Q.; Tada, E.; Nishikata, A., Effect of Oxygen Evolution on Platinum Dissolution in Acidic Solution. Mater. Trans. 2015, 56 (8), 1214-1218.
11. 胡啟章, 電化學原理與方法(二版), 2 Ed. 五南: 台北市, 2011.
12. Shi, Z. P.; Wang, X.; Ge, J. J.; Liu, C. P.; Xing, W., Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. Nanoscale 2020, 12 (25), 13249-13275.
13. Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L., Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 13.
14. Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Muller, K.; Starke, U.; Reuter, K.; Lotsch, B. V., Ruthenium Oxide Nanosheets for Enhanced Oxygen Evolution Catalysis in Acidic Medium. Adv. Energy Mater. 2019, 9 (15), 8.
15. Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L., Assembling Ultrasmall Copper-Doped Ruthenium Oxide Nanocrystals into Hollow Porous Polyhedra: Highly Robust Electrocatalysts for Oxygen Evolution in Acidic Media. Adv. Mater. 2018, 30 (29), 8.
16. Kumari, S.; Ajayi, B. P.; Kumar, B.; Jasinski, J. B.; Sunkara, M. K.; Spurgeon, J. M., A low-noble-metal W1-xIrxO3-delta water oxidation electrocatalyst for acidic media via rapid plasma synthesis. Energy Environ. Sci. 2017, 10 (11), 2432-2440.
17. Liang, X.; Shi, L.; Liu, Y. P.; Chen, H.; Si, R.; Yan, W. S.; Zhang, Q.; Li, G. D.; Yang, L.; Zou, X. X., Activating Inert, Nonprecious Perovskites with Iridium Dopants for Efficient Oxygen Evolution Reaction under Acidic Conditions. Angew. Chem.-Int. Edit. 2019, 58 (23), 7631-7635.
18. Kwong, W. L.; Lee, C. C.; Shchukarev, A.; Bjorn, E.; Messinger, J., High-performance iron (III) oxide electrocatalyst for water oxidation in strongly acidic media. J. Catal. 2018, 365, 29-35.
19. Yang, X. L.; Li, H. N.; Lu, A. Y.; Min, S. X.; Idriss, Z.; Hedhili, M. N.; Huang, K. W.; Idriss, H.; Li, L. J., Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy 2016, 25, 42-50.
20. Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J.; Song, L.; Yang, X. W.; Xiong, Y. J., Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic Media. Adv. Mater. 2017, 29 (32), 9.
21. Huynh, M.; Ozel, T.; Liu, C.; Lau, E. C.; Nocera, D. G., Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid. Chem. Sci. 2017, 8 (7), 4779-4794.
22. Wu, J. J.; Liu, M. J.; Chatterjee, K.; Hackenberg, K. P.; Shen, J. F.; Zou, X. L.; Yan, Y.; Gu, J.; Yang, Y. C.; Lou, J.; Ajayan, P. M., Exfoliated 2D Transition Metal Disulfides for Enhanced Electrocatalysis of Oxygen Evolution Reaction in Acidic Medium. Advanced Materials Interfaces 2016, 3 (9).
23. Moreno-Hernandez, I. A.; MacFarland, C. A.; Read, C. G.; Papadantonakis, K. M.; Brunschwig, B. S.; Lewis, N. S., Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4. Energy Environ. Sci. 2017, 10 (10), 2103-2108.
24. Pascuzzi, M. E. C.; van Velzen, M.; Hofmann, J. P.; Hensen, E. J. M., On the Stability of Co3O4 Oxygen Evolution Electrocatalysts in Acid. ChemCatChem 2021, 13 (1), 459-467.
25. Lei, C. J.; Chen, H. Q.; Cao, J. H.; Yang, J.; Qiu, M.; Xia, Y.; Yuan, C.; Yang, B.; Li, Z. J.; Zhang, X. W.; Lei, L. C.; Abbott, J.; Zhong, Y.; Xia, X. H.; Wu, G.; He, Q. G.; Hou, Y., FeN4 Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium. Adv. Energy Mater. 2018, 8 (26), 7.
26. Li, A. L.; Ooka, H.; Bonnet, N.; Hayashi, T.; Sun, Y. M.; Jiang, Q. K.; Li, C.; Han, H. X.; Nakamura, R., Stable Potential Windows for Long-Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angew. Chem.-Int. Edit. 2019, 58 (15), 5054-5058.
27. Fan, Z. H.; Jiang, J.; Ai, L. H.; Shao, Z. P.; Liu, S. M., Rational Design of Ruthenium and Cobalt-Based Composites with Rich Metal-Insulator Interfaces for Efficient and Stable Overall Water Splitting in Acidic Electrolyte. ACS Appl. Mater. Interfaces 2019, 11 (51), 47894-47903.
28. Guo, H. Y.; Fang, Z. W.; Li, H.; Fernandez, D.; Henkelman, G.; Humphrey, S. M.; Yu, G. H., Rational Design of Rhodium-Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution. ACS Nano 2019, 13 (11), 13225-13234.
29. Palaniselvam, T.; Aiyappa, H. B.; Kurungot, S., An efficient oxygen reduction electrocatalyst from graphene by simultaneously generating pores and nitrogen doped active sites. J. Mater. Chem. 2012, 22 (45), 23799-23805.
30. Fabbri, E.; Habereder, A.; Waltar, K.; Kotz, R.; Schmidt, T. J., Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2014, 4 (11), 3800-3821.
31. Nai, J. W.; Lu, Y.; Yu, L.; Wang, X.; Lou, X. W., Formation of Ni-Fe Mixed Diselenide Nanocages as a Superior Oxygen Evolution Electrocatalyst. Adv. Mater. 2017, 29 (41), 8.
32. Lin, H. W.; Raja, D. S.; Chuah, X. F.; Hsieh, C. T.; Chen, Y. A.; Lu, S. Y., Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Appl. Catal. B-Environ. 2019, 258, 12.
33. Ma, F.; Li, Q.; Wang, T. Y.; Zhang, H. G.; Wu, G., Energy storage materials derived from Prussian blue analogues. Sci. Bull. 2017, 62 (5), 358-368.
34. Zambiazi, P. J.; Aparecido, G. D.; Ferraz, T. V. D.; Skinner, W. S. J.; Yoshimura, R. G.; Moreira, D. E. B.; Germscheidt, R. L.; Nascimento, L. L.; Patrocinio, A. O. T.; Formiga, A. L. B.; Bonacin, J. A., Electrocatalytic water oxidation reaction promoted by cobalt-Prussian blue and its thermal decomposition product under mild conditions. Dalton Trans. 2020, 49 (45), 16488-16497.
35. Feng, Y.; Yu, X. Y.; Paik, U., Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chem. Commun. 2016, 52 (37), 6269-6272.
36. Ndalamo, J.; Mulaba-Bafubiandi, A. F.; Mamba, B. B., UV/visible spectroscopic analysis of CO3+ and CO2+ during the dissolution of cobalt from mixed Co-Cu oxidized ores. Int. J. Miner. Metall. Mater. 2011, 18 (3), 260-269.
37. Mondschein, J. S.; Callejas, J. F.; Read, C. G.; Chen, J. Y. C.; Holder, C. F.; Badding, C. K.; Schaak, R. E., Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chem. Mat. 2017, 29 (3), 950-957.
38. Yan, K. L.; Qin, J. F.; Lin, J. H.; Dong, B.; Chi, J. Q.; Liu, Z. Z.; Dai, F. N.; Chai, Y. M.; Liu, C. G., Probing the active sites of Co3O4 for the acidic oxygen evolution reaction by modulating the Co2+/Co3+ ratio. J. Mater. Chem. A 2018, 6 (14), 5678-5686.
39. Bhattacharjya, D.; Park, H. Y.; Kim, M. S.; Choi, H. S.; Inamdar, S. N.; Yu, J. S., Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-Ion Batteries. Langmuir 2014, 30 (1), 318-324.
40. Lei, Y.; Yang, Y.; Liu, Y. D.; Zhu, Y. X.; Jia, M. M.; Zhang, Y.; Zhang, K.; Yu, A. F.; Liu, J.; Zhai, J. Y., Nitrogen-Doped Porous Carbon Nanosheets Strongly Coupled with Mo2C Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. Nanoscale Res. Lett. 2019, 14 (1), 8.
41. Petrushenko, I. K.; Petrushenko, K. B., Hydrogen physisorption on nitrogen-doped graphene and graphene-like boron nitride-carbon heterostructures: a DFT study. Surf. Interfaces 2019, 17, 7.
42. Cheng, G. H.; Kou, T. Y.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H., O-2(2-)/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38, 155-166.
43. Zhang, P. H.; Sui, Y. M.; Xiao, G. J.; Wang, Y. N.; Wang, C. Z.; Liu, B. B.; Zou, G. T.; Zou, B., Facile fabrication of faceted copper nanocrystals with high catalytic activity for p-nitrophenol reduction. J. Mater. Chem. A 2013, 1 (5), 1632-1638.
44. Anantharaj, S.; Ede, S. R.; Karthick, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P. E.; Kundu, S., Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11 (4), 744-771.
45. Gerken, J. B.; McAlpin, J. G.; Chen, J. Y. C.; Rigsby, M. L.; Casey, W. H.; Britt, R. D.; Stahl, S. S., Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity. J. Am. Chem. Soc. 2011, 133 (36), 14431-14442.
46. Zhou, J.; Zhang, L. J.; Huang, Y. C.; Dong, C. L.; Lin, H. J.; Chen, C. T.; Tjeng, L. H.; Hu, Z. W., Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nat. Commun. 2020, 11 (1), 10.