簡易檢索 / 詳目顯示

研究生: 李政憲
Lee, Cheng-Hsien
論文名稱: 零價鐵結合中孔洞矽基材降解四氯乙烯還原脫氯反應之研究
Reductive Dechlorination of Tetrachloroethylene by Zerovalent Iron@Mesoporous Silica
指導教授: 董瑞安
Doong, Ruey-An
林弘萍
Lin, Hong-Ping
連興隆
Lien, Hsing-Lung
邱培君
Chiu, Pei-C.
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 123
中文關鍵詞: 四氯乙烯脫氯反應雙金屬系統中孔洞矽材
外文關鍵詞: tetrachloroethylene, dechlorination, bimetallic system, mesoporous silica
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The removal of chlorinated hydrocarbons by nanocomposites has recently received much attention. The immobilization of zerovalent iron (ZVI, Fe) onto support can decrease the aggregation of ZVI, resulting in enhancement of reactivity of ZVI. In this study, the SiO2 microspheres have been synthesized for immobilization of ZVI (Fe@SiO2) to enhance the dechlorination efficiency and rate of tetrachloroethylene (PCE) under anoxic conditions, several parameters including pH value, NaBH4 concentration, ferrous ion concentration, and temperature effect were optimized to synthesize Fe@SiO2 particles. Scanning electron microscopy images and electron elemental mapping showed that the distribution of Fe on SiO2 was uniform and the density of Fe increased as the iron loading increased from 10 to 50 wt%. The average particle sizes of Fe, calculated from transmission electron microscopy images, were 115 ± 28 nm for 10 wt% Fe, 156 ± 21 nm for 30 wt% Fe, and 175 ± 31 nm for 50 wt% Fe. The optimized Fe@SiO2 particles were used for dechlorination of PCE under anoxic conditions and found that the pseudo-first-order rate constant (kobs) for PCE dechlorination by Fe@SiO2 was 2-5 times higher than that by prue ZVI at pH 5.5-6.2 when normalized to the unit mass of ZVI. Addition of second catalytic ions including Pd and Ni significantly enhanced the dechlorination efficiency and rate of PCE by Fe@SiO2. The kobs for PCE dechlorination by Fe@SiO2 were 1.6×10-3 hr-1, and increased to 3.7 and 15.6 hr-1 when 10 wt% Ni(II) and 0.5 wt% Pd(II), respectively, were added into the solutions. In addition, the efficiency and rate of PCE dechlorination increased upon increasing the mass loading of Ni ranging between 0.1 and 10 wt%, and then decreased when further increased the Ni loading to 20 wt%. Similar result for Pd loading was also observed which the kobs for PCE dechlorination by Pd/Fe@SiO2 increased positively in the range 0.1-0.5 wt% and then decreased when further increased the Pd loading to 3 wt%. Column experiments showed good mobility and permeability of Fe@SiO2 compared with that of ZVI alone. The results obtained in this study clearly show that the immobilization of ZVI nanoparticles on the mesoporous silica can not only increase the reactivity for dechlorination of PCE but also enhance mobility and permeability for in-situ remediation of groundwater.


    利用奈米複合材料去除氯化有機物近來為相當受到重視的新穎處理技術。固定零價鐵於基材上可以減少零價鐵的聚集並進一步提升零價鐵的反應性。因此本研究的主要目的為,固定零價鐵於二氧化矽微球上,以提升複合材料在厭氧環境下對四氯乙烯的去除效率。在複合材料Fe@SiO2合成過程中,針對pH值、硼氫化鈉濃度、二價鐵離子濃度及溫度效應進行最優化探討。藉由掃描式電子顯微鏡及元素電子分布圖可知零價鐵在二氧化矽微球上的分布均勻且零價鐵密度也隨著鐵含量的上升而增加。從穿透式電子顯微鏡圖計算零價鐵在二氧化矽微球上的平均粒徑,從10 wt%的115 ± 28 nm增加到30 wt%的156 ± 21 nm之後再到50 wt%的175 ± 31 nm。最佳化的Fe@SiO2複合材料被應用於厭氧環境下去除四氯乙烯。結果顯示Fe@SiO2複合材料之質量均化擬一階速率常數為純零價鐵去除四氯乙烯之速率常數的2-5倍。加入催化金屬包含鈀、鎳能夠有效提升四氯乙烯的去除效率。Fe@SiO2複合材料的去除效率常數為1.6×10-3 hr-1。但添加10 wt%鎳離子後,其擬一階反應常數可提升至3.7 hr-1。隨著二價鎳從0.1增加至10 wt%,速率常數也隨著增加。然而,當增加至20 wt%則隨之降低。鈀的最佳劑量為0.5 wt%,其擬一階反應速率常數則提升至15.6 hr-1。與鎳的情形類似,當鈀的添加量0.1增加至0.5 wt%,擬一階反應速率常數也由0.32 hr-1增加至15.6 hr-1。然而,增加至3 wt%則隨之降低。管柱實驗結果顯示Fe@SiO2複合材料具有良好的移動性與透水性質。從本研究結果中,可得知固定零價鐵於二氧化矽微球上不但可以提升四氯乙烯的去除效率,還可增加對於地下水現地處理的移動性與透水性。

    Content Index Abstract I 中文摘要 III Content Index IV Figure Index VII Chapter 1 Introduction 1 1-1 Introduction 1 1-2 Objectives 3 Chapter 2 Background and theory 4 2-1 Physicochemical properties of chlorinated hydrocarbons 4 2-2 Synthesis, properties, and environmental application of zerovalent iron 7 2-2-1 Synthesis of zerovalent iron 7 2-2-2 Properties of zerovalent iron 9 2-2-3 Environmental application of zerovalent iron 10 2-3 Introductions to mesoporous materials 11 2-3-1 Mesoporous materials 12 2-3-2 Sol-gel process of silicate 14 2-4 Chemistry of permeable reactive barrier for groundwater cleanup 15 2-5 Abiotic dechlorination by zero-valent iron 17 2-6 Immobilization of zerovalent iron on different support 21 Chapter 3 Research methodology 25 3-1 Experiment scheme 25 3-2 Materials and methods 26 3-2-1 Reagents 26 3-2-2 Preparation of deoxygenated water 27 3-2-3 Preparation of batch system 28 3-2-4 Synthesis of mesoporous silica 28 3-2-5 Immobilization of zerovalent iron onto mesoporous silica 29 3-3 Analytical methods 30 3-4 Characterization 31 3-4-1 X-ray powder diffraction 31 3-4-2 Surface area analyzer 32 3-4-3 Transmission Electron Microscopy (TEM) 32 3-4-4 Scanning Electron Microscopy (SEM) 32 3-4-5 X-ray photoelectron spectroscopy 32 3-5 Column experiments 33 Chapter 4 Results & Discussions 37 4-1 Characterization of mesoporous silica 37 4-2 Optimization of Fe@SiO2 39 4-2-1 Effect of pH value 39 4-2-2 Influence of ferrous sulfate concentration 44 4-2-3 Influence of NaBH4 concentration 50 4-2-4 Effect of ice bath 53 4-2-5 Nanoscale zerovalent iron in the absence of mesoporous silica 55 4-3 Different loading of nanoscale zerovalent iron on the mesoporous silica 57 4-4 Dechlorination of PCE by Fe@SiO2 72 4-5 Effect of second catalytic metal in dechlorination of PCE by Fe@SiO2 80 4-5-1 Effect of Pd ion 80 4-5-2 Effect of Ni ions 92 4-6 Column experiments 104 Chapter 5 Conclusions 106 Appendix 107 Reference 114

    1. Scherer, M. M.; Richter, S.; Valentine, R. L.; Alvarez, P. J. J., Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Critical Reviews in Environmental Science and Technology 2000, 30, (3), 363-411.
    2. Tratnyek, P. G.; Johnson, R. L., Nanotechnologies for environmental cleanup. Nano Today 2006, 1, (2), 44-48.
    3. Caraballo, M. A.; Santofimia, E.; Jarvis, A. P., Metal retention, mineralogy, and design considerations of a mature permeable reactive barrier (PRB) for acidic mine water drainage in Northumberland, U.K. American Mineralogist 2010, 95, (11-12), 1642-1649.
    4. Phillips, D. H.; Van Nooten, T.; Bastiaens, L.; Russell, M. I.; Dickson, K.; Plant, S.; Ahad, J. M. E.; Newton, T.; Elliot, T.; Kalin, R. M., Ten Year Performance Evaluation of a Field-Scale Zero-Valent Iron Permeable Reactive Barrier Installed to Remediate Trichloroethene Contaminated Groundwater. Environmental Science & Technology 2010, 44, (10), 3861-3869.
    5. Lalinska, B.; Sottnik, P.; Sgem, ZERO-VALENT IRON AS APPROPRIATE REACTIVE MATERIAL FOR SB AND AS REMOVAL - THE APPLICATION OF INSTITU PERMEABLE REACTIVE BARRIER TECHNOLOGY. Int Scientific Conference Sgem: Sofia, 2008; p 209-210.
    6. He, Y. T.; Wilson, J. T.; Wilkin, R. T., Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater. Environmental Science & Technology 2008, 42, (17), 6690-6696.
    7. Wilkin, R. T.; Su, C. M.; Ford, R. G.; Paul, C. J., Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environmental Science & Technology 2005, 39, (12), 4599-4605.
    8. Lee, C. C.; Doong, R. A., Dechlorination of tetrachloroethylene in aqueous solutions using metal-modified zerovalent silicon. Environmental Science & Technology 2008, 42, (13), 4752-4757.
    9. Tee, Y. H.; Bachas, L.; Bhattacharyya, D., Degradation of Trichloroethylene and Dichlorobiphenyls by Iron-Based Bimetallic Nanoparticles. Journal of Physical Chemistry C 2009, 113, (22), 9454-9464.
    10. Luo, S.; Yang, S. G.; Wang, X. D.; Sun, C., Reductive degradation of tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation. Chemosphere 2010, 79, (6), 672-678.
    11. Kim, J. H.; Tratnyek, P. G.; Chang, Y. S., Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environmental Science & Technology 2008, 42, (11), 4106-4112.
    12. Gillham, R. W.; Ohannesin, S. F., Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron. Ground Water 1994, 32, (6), 958-967.
    13. Orth, W. S.; Gillham, R. W., Dechlorination of trichloroethene in aqueous solution using Fe-O. Environmental Science & Technology 1996, 30, (1), 66-71.
    14. Matheson, L. J.; Tratnyek, P. G., Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environmental Science & Technology 1994, 28, (12), 2045-2053.
    15. Schrick, B.; Blough, J. L.; Jones, A. D.; Mallouk, T. E., Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials 2002, 14, (12), 5140-5147.
    16. Hsieh, S. H.; Horng, J. J., Deposition of Fe-Ni nanoparticles on Al2O3 for dechlorination of chloroform and trichloroethylene. Applied Surface Science 2006, 253, (3), 1660-1665.
    17. Xu, J.; Bhattacharyya, D., Membrane-based bimetallic nanoparticles for environmental remediation: Synthesis and reactive properties. Environmental Progress 2005, 24, (4), 358-366.
    18. Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews 2004, 104, (9), 3893-3946.
    19. Saleh, N.; Sirk, K.; Liu, Y. Q.; Phenrat, T.; Dufour, B.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V., Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science 2007, 24, (1), 45-57.
    20. Xu, J.; Bhattacharyya, D., Modeling of Fe/Pd nanoparticle-based functionalized membrane reactor for PCB dechlorination at room temperature. Journal of Physical Chemistry C 2008, 112, (25), 9133-9144.
    21. Schrick, B.; Hydutsky, B. W.; Blough, J. L.; Mallouk, T. E., Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials 2004, 16, (11), 2187-2193.
    22. Gleiter, H., Nanocrystalline Materials. Progress in Materials Science 1989, 33, (4), 223-315.
    23. SanchezLopez, J. C.; Justo, A.; Fernandez, A.; Conde, C. F.; Conde, A., Preparation and thermal evolution of vapour-condensed nanocrystalline iron. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties 1997, 76, (4), 663-667.
    24. Yurkova, O. L.; Byakova, O. V.; Milman, Y. V., Plasticity of Nanocrystalline BCC Iron Fabricated by Severe Plastic Deformation by Friction. Metallofizika I Noveishie Tekhnologii 2009, 31, (3), 405-412.
    25. Del Bianco, L.; Hernando, A.; Navarro, E.; Bonetti, E.; Pasquini, L., Structural configuration and magnetic effects in as-milled and annealed nanocrystalline iron. Journal De Physique Iv 1998, 8, (P2), 107-110.
    26. Tao, N. R.; Sui, M. L.; Lu, J.; Lu, K., Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostructured Materials 1999, 11, (4), 433-440.
    27. Carpenter, E. E., Iron nanoparticles as potential magnetic carriers. Journal of Magnetism and Magnetic Materials 2001, 225, (1-2), 17-20.
    28. Wiggins, J.; Carpenter, E. E.; O'Connor, C. J., Phenomenological magnetic modeling of Au : Fe : Au nano-onions. Journal of Applied Physics 2000, 87, (9), 5651-5653.
    29. Liu, Z. L.; Wang, H. B.; Lu, Q. H.; Du, G. H.; Peng, L.; Du, Y. Q.; Zhang, S. M.; Yao, K. L., Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 2004, 283, (2-3), 258-262.
    30. Jiang, W. Q.; Yang, H. C.; Yang, S. Y.; Horng, H. E.; Hung, J. C.; Chen, Y. C.; Hong, C. Y., Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. Journal of Magnetism and Magnetic Materials 2004, 283, (2-3), 210-214.
    31. Kim, D. K.; Zhang, Y.; Voit, W.; Kao, K. V.; Kehr, J.; Bjelke, B.; Muhammed, M., Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scripta Materialia 2001, 44, (8-9), 1713-1717.
    32. Zhang, W. X., Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research 2003, 5, (3-4), 323-332.
    33. Djekoun, A.; Boudinar, N.; Chebli, A.; Otmani, A.; Benabdeslem, M.; Bouzabata, B.; Greneche, J. M., Characterization of Fe and Fe50Ni50 ultrafine nanoparticles synthesized by inert gas-condensation method. Physica B-Condensed Matter 2009, 404, (20), 3824-3829.
    34. Li, W.; Guo, D. F.; Li, X. H.; Chen, Y.; Gunderov, D. V.; Stolyarov, V. V.; Zhang, X. Y., Bulk alpha-Fe/Nd2Fe14B nanocomposite magnets produced by severe plastic deformation combined with thermal annealing. Journal of Applied Physics 2010, 108, (5), -.
    35. Munoz, J. E.; Cervantes, J.; Esparza, R.; Rosas, G., Iron nanoparticles produced by high-energy ball milling. Journal of Nanoparticle Research 2007, 9, (5), 945-950.
    36. Liu, H.; Du, X. L.; Gao, P. Y.; Zhao, J. H.; Fang, J.; Shen, W. G., Distinct magnetic properties of one novel type of nanoscale cobalt-iron Prussian blue analogues synthesized in microemulsion. Journal of Magnetism and Magnetic Materials 2010, 322, (5), 572-577.
    37. Choi, C. J.; Dong, X. L.; Kim, B. K., Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation. Scripta Materialia 2001, 44, (8-9), 2225-2229.
    38. Makela, J. M.; Keskinen, H.; Forsblom, T.; Keskinen, J., Generation of metal and metal oxide nanoparticles by liquid flame spray process. Journal of Materials Science 2004, 39, (8), 2783-2788.
    39. Signoretti, S.; Del Blanco, L.; Pasquini, L.; Matteucci, G.; Beeli, C.; Bonetti, E., Electron holography of gas-phase condensed Fe nanoparticles. Journal of Magnetism and Magnetic Materials 2003, 262, (1), 142-145.
    40. Li, F.; Vipulanandan, C.; Mohanty, K. K., Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2003, 223, (1-3), 103-112.
    41. Liu, Y. Q.; Majetich, S. A.; Tilton, R. D.; Sholl, D. S.; Lowry, G. V., TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology 2005, 39, (5), 1338-1345.
    42. Sarathy, V.; Salter, A. J.; Nurmi, J. T.; Johnson, G. O.; Johnson, R. L.; Tratnyek, P. G., Degradation of 1,2,3-Trichloropropane (TCP): Hydrolysis, Elimination, and Reduction by Iron and Zinc. Environmental Science & Technology 44, (2), 787-793.
    43. Hunt, N. T.; Jaye, A. A.; Meech, S. R., Polarisation-resolved ultrafast Raman responses of carbon disulfide in solution and microemulsion environments. Chemical Physics Letters 2003, 371, (3-4), 304-310.
    44. He, N.; Li, P. J.; Zhou, Y. C.; Ren, W. X.; Fan, S. X.; Verkhozina, V. A., Catalytic dechlorination of polychlorinated biphenyls in soil by palladium-iron bimetallic catalyst. Journal of Hazardous Materials 2009, 164, (1), 126-132.
    45. Feng, J.; Lim, T. T., Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere 2005, 59, (9), 1267-1277.
    46. Dixit, S.; Hering, J. G., Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology 2003, 37, (18), 4182-4189.
    47. Kanel, S. R.; Manning, B.; Charlet, L.; Choi, H., Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology 2005, 39, (5), 1291-1298.
    48. Kanel, S. R.; Greneche, J. M.; Choi, H., Arsenic(V) removal kom groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology 2006, 40, (6), 2045-2050.
    49. Katsoyiannis, I. A.; Ruettimann, T.; Hug, S. J., pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science & Technology 2008, 42, (19), 7424-7430.
    50. Xu, W. Y.; Gao, T. Y.; Fan, J. H., Reduction of nitrobenzene by the catalyzed Fe-Cu process. Journal of Hazardous Materials 2005, 123, (1-3), 232-241.
    51. Choe, S.; Chang, Y. Y.; Hwang, K. Y.; Khim, J., Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 2000, 41, (8), 1307-1311.
    52. Shu, J. S.; Xia, W. S.; Zhang, Y. J.; Cheng, T.; Gao, M. R., Low-temperature catalytic reduction of nitrogen monoxide with carbon monoxide on copper iron and copper cobalt composite oxides. Chinese Journal of Chemical Physics 2008, 21, (4), 393-400.
    53. Wang, Q.; Snyder, S.; Kim, J.; Choi, H., Aqueous Ethanol modified Nanoscale Zerovalent Iron in Bromate Reduction: Synthesis, Characterization, and Reactivity. Environmental Science & Technology 2009, 43, (9), 3292-3299.
    54. Behrens, P., Mesoporous Inorganic Solids. Advanced Materials 1993, 5, (2), 127-132.
    55. Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie-International Edition 1999, 38, (1-2), 56-77.
    56. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, (6397), 710-712.
    57. Lin, H. P.; Mou, C. Y., Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts of Chemical Research 2002, 35, (11), 927-935.
    58. Birke, V.; Burmeier, H.; Rosenau, D., Permeable reactive barrier technologies for groundwater remediation in Germany: Recent progress and new developments. Fresenius Environmental Bulletin 2003, 12, (6), 623-628.
    59. Baciocchi, R.; Boni, M. R.; D'Aprile, L., Characterization and performance of granular iron as reactive media for TCE degradation by permeable reactive barriers. Water Air and Soil Pollution 2003, 149, (1-4), 211-226.
    60. Tratnyek, P. G., Forum - Keeping up with all that literature: The IronRefs database turns 500. Ground Water Monitoring and Remediation 2002, 22, (3), 92-94.
    61. Roote, D. S.; Miller, R. R.; Sacre, J. A.; Merski, A. T., Groundwater clean-up options. Chemical Engineering 1997, 104, (5), 104-112.
    62. Su, C. M.; Puls, R. W., Kinetics of trichloroethene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products. Environmental Science & Technology 1999, 33, (1), 163-168.
    63. Lien, H. L.; Zhang, W. X., Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering-Asce 1999, 125, (11), 1042-1047.
    64. Doong, R. A.; Wu, S. C., The Effect of Oxidation-Reduction Potential on the Biotransformations of Chlorinated Hydrocarbons. Water Science and Technology 1992, 26, (1-2), 159-168.
    65. Kim, S.; Picardal, F. W., Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides. Environmental Toxicology and Chemistry 1999, 18, (10), 2142-2150.
    66. Amonette, J. E.; Workman, D. J.; Kennedy, D. W.; Fruchter, J. S.; Gorby, Y. A., Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environmental Science & Technology 2000, 34, (21), 4606-4613.
    67. Lowry, G. V.; Reinhard, M., Hydrodehalogenation of 1-to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas. Environmental Science & Technology 1999, 33, (11), 1905-1910.
    68. Pecher, K.; Haderlein, S. B.; Schwarzenbach, R. P., Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environmental Science & Technology 2002, 36, (8), 1734-1741.
    69. Cheng, R.; Wang, J. L.; Zhang, W. X., Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0. Journal of Hazardous Materials 2007, 144, (1-2), 334-339.
    70. Narr, J.; Viraraghavan, T.; Jin, Y. C., Applications of nanotechnology in water/wastewater treatment: A review. Fresenius Environmental Bulletin 2007, 16, (4), 320-329.
    71. Li, L.; Fan, M. H.; Brown, R. C.; Van Leeuwen, J. H.; Wang, J. J.; Wang, W. H.; Song, Y. H.; Zhang, P. Y., Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Critical Reviews in Environmental Science and Technology 2006, 36, (5), 405-431.
    72. He, F.; Zhao, D. Y.; Liu, J. C.; Roberts, C. B., Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research 2007, 46, (1), 29-34.
    73. Wang, X. Y.; Chen, C.; Liu, H. L.; Ma, J., Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water Research 2008, 42, (18), 4656-4664.
    74. Ponder, S. M.; Darab, J. G.; Mallouk, T. E., Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology 2000, 34, (12), 2564-2569.
    75. Shimotori, T.; Nuxoll, E. E.; Cussler, E. L.; Arnold, W. A., A polymer membrane containing Fe-0 as a contaminant barrier. Environmental Science & Technology 2004, 38, (7), 2264-2270.
    76. Kim, H.; Hong, H. J.; Lee, Y. J.; Shin, H. J.; Yang, J. W., Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane. Desalination 2008, 223, (1-3), 212-220.
    77. Bai, X.; Ye, Z. F.; Qu, Y. Z.; Li, Y. F.; Wang, Z. Y., Immobilization of nanoscale Fe-0 in and on PVA microspheres for nitrobenzene reduction. Journal of Hazardous Materials 2009, 172, (2-3), 1357-1364.
    78. Choi, H.; Al-Abed, S. R.; Agarwal, S.; Dionysiou, D. D., Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials 2008, 20, (11), 3649-3655.
    79. Zhan, J. J.; Zheng, T. H.; Piringer, G.; Day, C.; McPherson, G. L.; Lu, Y. F.; Papadopoulos, K.; John, V. T., Transport Characteristics of Nanoscale Functional Zerovalent Iron/Silica Composites for in Situ Remediation of Trichloroethylene. Environmental Science & Technology 2008, 42, (23), 8871-8876.
    80. Hoch, L. B.; Mack, E. J.; Hydutsky, B. W.; Hershman, J. M.; Skluzacek, I. M.; Mallouk, T. E., Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science & Technology 2008, 42, (7), 2600-2605.
    81. Wang, C. B.; Zhang, W. X., Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology 1997, 31, (7), 2154-2156.
    82. Carregal-Romero, S.; Perez-Juste, J.; Herves, P.; Liz-Marzan, L. M.; Mulvaney, P., Colloidal Gold-Catalyzed Reduction of Ferrocyanate (III) by Borohydride Ions: A Model System for Redox Catalysis. Langmuir 2010, 26, (2), 1271-1277.
    83. Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C. M.; Linehan, J. C.; Matson, D. W.; Penn, R. L.; Driessen, M. D., Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology 2005, 39, (5), 1221-1230.
    84. Fang, Y.; Al-Abed, S. R., Correlation of 2-chlorobiphenyl dechlorination by Fe/Pd with iron corrosion at different pH. Environmental Science & Technology 2008, 42, (18), 6942-6948.
    85. Cheng, S. F.; Wu, S. C., Feasibility of using metals to remediate water containing TCE. Chemosphere 2001, 43, (8), 1023-1028.
    86. Wu, L. F.; Ritchie, S. M. C., Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere 2006, 63, (2), 285-292.
    87. Cheng, S. F.; Wu, S. C., The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere 2000, 41, (8), 1263-1270.
    88. Nutt, M. O.; Hughes, J. B.; Wong, M. S., Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environmental Science & Technology 2005, 39, (5), 1346-1353.
    89. Tee, Y. H.; Grulke, E.; Bhattacharyya, D., Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Industrial & Engineering Chemistry Research 2005, 44, (18), 7062-7070.
    90. Lin, C. J.; Lo, S. L.; Liou, Y. H., Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron. Journal of Hazardous Materials 2004, 116, (3), 219-228.
    91. Bransfield, S. J.; Cwiertny, D. M.; Roberts, A. L.; Fairbrother, D. H., Influence of copper loading and surface coverage on the reactivity of granular iron toward 1,1,1-trichloroethane. Environmental Science & Technology 2006, 40, (5), 1485-1490.
    92. Cwiertny, D. M.; Bransfield, S. J.; Livi, K. J. T.; Fairbrother, D. H.; Roberts, A. L., Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environmental Science & Technology 2006, 40, (21), 6837-6843.
    93. Lien, H. L.; Zhang, W. X., Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al. Chemosphere 2002, 49, (4), 371-378.
    94. Han, Y.; Li, W.; Zhang, M. H.; Tao, K., Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant. Chemosphere 2008, 72, (1), 53-58.
    95. Sanchez, C. A. G.; Patino, C. O. M.; de Correa, C. M., Catalytic hydrodechlorination of dichloromethane in the presence of traces of chloroform and tetrachloroethylene. Catalysis Today 2008, 133, 520-525.
    96. Parshetti, G. K.; Doong, R. A., Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. Water Research 2009, 43, (12), 3086-3094.
    97. Nagpal, V.; Bokare, A. D.; Chikate, R. C.; Rode, C. V.; Paknikar, K. M., Reductive dechlorination of gamma-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles. Journal of Hazardous Materials 2010, 175, (1-3), 680-687.
    98. Liu, L.; Yin, J.; Zhang, L. G., ACSAICHE 99123-Effects of ferrous ions on reduction of nitrobenzene by zero-valent iron. Abstracts of Papers of the American Chemical Society 2008, 235, 99123-ACSA.
    99. Hezelova, M.; Pikna, L.; Kladekova, D.; Lux, L., Effect of chloride ions on the kinetics of nitrobenzene reduction by powdered iron. Chemical Papers-Chemicke Zvesti 2006, 60, (5), 360-364.
    100. Huang, Y. H.; Zhang, T. C., Reduction of nitrobenzene and formation of corrosion coatings in zerovalent iron systems. Water Research 2006, 40, (16), 3075-3082.
    101. Kim, Y. H.; Carraway, E. R., Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental Science & Technology 2000, 34, (10), 2014-2017.
    102. Hou, M. F.; Wan, H. F.; Zhou, Q. X.; Liu, X. M.; Luo, W.; Fan, Y. N., The Dechlorination of Pentachlorophenol by Zerovalent Iron in Presence of Carboxylic Acids. Bulletin of Environmental Contamination and Toxicology 2009, 82, (2), 137-144.
    103. Jou, C. J., Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy. Journal of Hazardous Materials 2008, 152, (2), 699-702.
    104. Xie, L.; Shang, C., Effects of copper and palladium on the red-action of bromate by Fe(0). Chemosphere 2006, 64, (6), 919-930.
    105. Liou, Y. H.; Lo, S. L.; Lin, C. J.; Hu, C. Y.; Kuan, W. H.; Weng, S. C., Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: Effects of H-2-reducing pretreatment and copper deposition. Environmental Science & Technology 2005, 39, (24), 9643-9648.
    106. Farrell, J.; Kason, M.; Melitas, N.; Li, T., Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environmental Science & Technology 2000, 34, (3), 514-521.
    107. Muftikian, R.; Nebesny, K.; Fernando, Q.; Korte, N., X-ray photoelectron spectra of the palladium-iron bimetallic surface used for the rapid dechlorination of chlorinated organic environmental contaminants. Environmental Science & Technology 1996, 30, (12), 3593-3596.
    108. Yan, W. L.; Herzing, A. A.; Li, X. Q.; Kiely, C. J.; Zhang, W. X., Structural Evolution of Pd-Doped Nanoscale Zero-Valent Iron (nZVI) in Aqueous Media and Implications for Particle Aging and Reactivity. Environmental Science & Technology 2010, 44, (11), 4288-4294.
    109. Li, X. Q.; Zhang, W. X., Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 2006, 22, (10), 4638-4642.
    110. Li, X. Q.; Zhang, W. X., Sequestration of metal cations with zerovalent iron nanoparticles - A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C 2007, 111, (19), 6939-6946.
    111. Reardon, E. J.; Fagan, R.; Vogan, J. L.; Przepiora, A., Anaerobic corrosion reaction kinetics of nanosized iron. Environmental Science & Technology 2008, 42, (7), 2420-2425.
    112. Alonso, F.; Beletskaya, I. P.; Yus, M., Metal-mediated reductive hydrodehalogenation of organic halides. Chemical Reviews 2002, 102, (11), 4009-4091.
    113. Lien, H. L.; Zhang, W. X., Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Applied Catalysis B-Environmental 2007, 77, (1-2), 110-116.
    114. Cheng, R.; Zhou, W.; Wang, J. L.; Qi, D. D.; Guo, L.; Zhang, W. X.; Qian, Y., Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: Role of nano-Ni and its size effect. Journal of Hazardous Materials 2010, 180, (1-3), 79-85.
    115. Wang, C. M.; Baer, D. R.; Thomas, L. E.; Amonette, J. E.; Antony, J.; Qiang, Y.; Duscher, G., Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. Journal of Applied Physics 2005, 98, (9), -.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE