簡易檢索 / 詳目顯示

研究生: 陳耀弘
Chen, Yao Hung
論文名稱: 以標記演算法求解模糊半指派問題
A Labeling Algorithm for Solving Semi-Assignment Problems with Fuzzy Cost
指導教授: 溫于平
Wen, Ue Pyng
林吉仁
Lin, Chi Jen
口試委員: 翁偉泰
張丁才
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 50
中文關鍵詞: 半指派問題模糊規劃標記演算法
外文關鍵詞: Semi-assignment problem, Fuzzy programming, Labeling algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討如何運用標記演算法來解模糊半指派問題。傳統指派問題屬於一對一指派,但在實務問題中,常會有分組、分群工作的情形,此時半指派問題的模型就能更貼切於這種實際狀況。此外,在許多現實情況中,我們無法完全掌握確切成本等參數或因為一些人為因素而有了不確定性,相較於傳統指派問題,成本不再是一個確定值而是一個範圍,我們可以利用模糊數更好的表達出這種不確定性的模型。
    過去求解模糊運輸問題或模糊指派問題大多使用三角模糊數和梯形模糊數再利用順序函數(Ranking function)來將模糊集轉換成明確集(Crisp set)進行求解,本研究中,我們透過不同的方式來定義歸屬函數(Membership function),包含管理者隨著總成本線性遞減的歸屬函數和個別員工指派成本在模糊區間線性遞增的歸屬函數。在同時看重管理者和員工的績效下進而建構出模糊半指派模型,再提出一演算法來解此模糊半指派問題,同時也以數值例的方式來呈現演算法的步驟流程。最後,透過參數的改變以及數據計算結果來分析結果是否符合預期並提供其管理意涵。


    This thesis concentrates on using a labeling algorithm to solve fuzzy semi-assignment problem (semi-AP). The assignment problem is one-to-one assignment. However, in real-world applications, a task or project needs to be completed by a group of people. In this situation, semi-AP is more suitable than classic assignment problem. In addition, in real life situations, the costs of semi-AP may be imprecise. Also, human behavior in organization may cause uncertainty. In order to deal with these problems, we use the fuzzy number to express this uncertain situation.
    In the past, most of fuzzy transportation problems and fuzzy assignment problems use triangular fuzzy number or trapezoidal fuzzy number then transform fuzzy set to crisp set by ranking function. In this study, we define the membership function through different viewpoint instead of using triangular fuzzy number or trapezoidal fuzzy number. The membership functions include manager’s perspective and workers’ perspective; the former is a decreasing linear membership function and the latter is increasing linear membership function. This study construct the fuzzy semi-AP based on emphasizing the performance of manager and workers equally and propose an algorithm to solve the fuzzy semi-AP. The numerical example is presented to demonstrate the procedure of the proposed algorithm. Finally, we change parameters to analyze the performances of the proposed algorithm and provide some management implications.

    TABLE OF CONTENTS 摘要 ABSTRACT 誌謝 LIST OF FIGURES LIST OF TABLES LIST OF NOTATIONS 1. INTRODUCTION 1.1 Motivation 1.2 Research framework 2. LITERATURE REVIEW 2.1 The semi-AP 2.2 The fuzzy assignment problem 2.3 The fuzzy transportation problem 2.4 The labeling algorithm 3. BASIC DEFINITIONS 3.1 Basic definition 3.2 Model representation 4. THE PROPOSED LABELING ALGORITHM 4.1 Preliminaries 4.2 Procedure of the proposed labeling algorithm 4.3 Numerical Example 5. COMPUTATIONAL RESULTS 5.1 The comparison between different methods’ initial feasible solutions 5.2 The comparison between different problem sizes 5.3 The comparison between different ranges of q_ij 6. CONCLUSION REFERENCES

    [1] Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2011). Linear programming and
    network flows. John Wiley & Sons.
    [2] Barr, R., Glover, F., & Klingman, D. (1978). A new alternating basis algorithm for
    semi-assignment networks. Computers and Mathematical Programming, 223-232.
    [3] Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy
    environment.Management science, 17(4), B-141.
    [4] Pandian, P., & Natarajan, G. (2010). A new algorithm for finding a fuzzy optimal
    solution for fuzzy transportation problems. Applied Mathematical Sciences, 4(2),
    79-90.
    [5] Li, L., Huang, Z., Da, Q., & Hu, J. (2008, May). A new method based on goal
    programming for solving transportation problem with fuzzy cost. In Information
    Processing (ISIP), 2008 International Symposiums on (pp. 3-8). IEEE.
    [6] Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit
    interval.Information sciences, 24(2), 143-161.
    [7] Nagarajan, R., & Solairaju, A. (2010). Computing improved fuzzy optimal
    Hungarian assignment problems with fuzzy costs under robust ranking
    techniques. Computing, 6(4).
    [8] D.F. Votaw, and A. Orden. (1952). The personnel assignment problem.
    Symposium on linear inequalities and programming, US Air Force, 10, 155-163.
    [9] Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval
    research logistics quarterly, 2(1‐2), 83-97.
    [10] Duffuaa, S. O., & Al-Ghassab, M. S. (1994). A successive shortest path
    algorithm for the semi-assignment problem.
    [11] Fisher, M. L., Jörnsten, K. O., & Madsen, O. B. (1997). Vehicle routing with
    time windows: Two optimization algorithms. Operations Research, 45(3),
    488-492.
    [12] Kennington, J., & Wang, Z. (1992). A shortest augmenting path algorithm for the
    semi-assignment problem. Operations Research, 40(1), 178-187.
    [13] Mukherjee, S., & Basu, K. (2010). Application of Fuzzy Ranking Method for
    Solving Assignment Problems with Fuzzy Costs. International Journal of
    Computational & Applied Mathematics, 5(3).
    [14] Lin, C. J. (2013). Assignment problem for team performance promotion under
    fuzzy environment. Mathematical Problems in Engineering, 2013.
    [15] Dubois, D., & Fortemps, P. (1999). Computing improved optimal solutions to
    max–min flexible constraint satisfaction problems. European Journal of
    Operational Research, 118(1), 95-126.
    [16] Ridwan, M. (2004). Fuzzy preference based traffic assignment
    problem.Transportation Research Part C: Emerging Technologies, 12(3),
    209-233.
    [17] Chen, M. S. (1985). On a fuzzy assignment problem. Tamkang J, 22, 407-411.
    [18] Lin, C. J., & Wen, U. P. (2004). A labeling algorithm for the fuzzy assignment
    problem. Fuzzy Sets and Systems, 142(3), 373-391.
    [19] Lin, C. J., Wen, U. P., & Lin, P. Y. (2011). Advanced sensitivity analysis of the
    fuzzy assignment problem. Applied Soft Computing, 11(8), 5341-5349.
    [20] Ye, X., & Xu, J. (2008). A fuzzy vehicle routing assignment model with
    connection network based on priority-based genetic algorithm. World Journal of
    Modelling and Simulation, 4(4), 257-268.
    [21] Majumdar, J., & Bhunia, A. K. (2007). Elitist genetic algorithm for assignment
    problem with imprecise goal. European Journal of Operational Research,177(2),
    684-692.
    [22] Chanas, S., Kołodziejczyk, W., & Machaj, A. (1984). A fuzzy approach to the
    transportation problem. Fuzzy Sets and Systems, 13(3), 211-221.
    [23] Tada, M., & Ishii, H. (1996). An integer fuzzy transportation problem.Computers
    & Mathematics with Applications, 31(9), 71-87.
    [24] Pandian, P., & Natarajan, G. (2010). A new algorithm for finding a fuzzy optimal
    solution for fuzzy transportation problems. Applied Mathematical Sciences, 4(2),
    79-90.
    [25] Balinski, M. L., & Gomory, R. E. (1964). A primal method for the assignment
    and transportation problems. Management Science, 10(3), 578-593.
    [26] Namkoong, S., Rho, J. H., & Choi, J. U. (1998). Development of the tree-based
    link labeling algorithm for optimal path-finding in urban transportation
    networks.Mathematical and computer modelling, 27(9), 51-65.
    [27] Dijkstra, E. W. (1959). A note on two problems in connexion with
    graphs.Numerische mathematik, 1(1), 269-271.
    [28] Captivo, M. E., Clı́maco, J., Figueira, J., Martins, E., & Santos, J. L. (2003).
    Solving bicriteria 0–1 knapsack problems using a labeling algorithm. Computers
    & Operations Research, 30(12), 1865-1886.
    [29] Sakarovitch, M. (1973). Two commodity network flows and linear
    programming.Mathematical Programming, 4(1), 1-20.
    [30] Ma, K. T., Lin, C. J., & Wen, U. P. (2013). Type II sensitivity analysis of cost
    coefficients in the degenerate transportation problem. European Journal of
    Operational Research, 227(2), 293-300.
    [31] Werners, B. (1987). Interactive multiple objective programming subject to
    flexible constraints. European Journal of Operational Research, 31(3), 342-349.
    [32] Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional
    functionals. Naval Research logistics quarterly, 9(3‐4), 181-186.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE