研究生: |
黃盈禎 Huang, Ying-Chen |
---|---|
論文名稱: |
二氧化矽奈米孔洞材料的新穎合成與催化應用 Novel Synthesis and Catalytic Application of Nanoporous Silica Materials |
指導教授: |
楊家銘
Yang, Chia-Min |
口試委員: |
朱立岡
Chu, Li-Kang 林昇佃 Lin, Shawn-D. |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 二氧化矽奈米孔洞材料 、無模板合成法 、"pH-jump"合成法 、丙烯選擇性氧化 |
外文關鍵詞: | silica nanoporous materials, template-free synthesis, “pH-jump” synthesis, selective oxidation of propylene |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在以簡易的"pH-jump"法合成二氧化矽奈米孔洞材料,依循環境友善及高經濟價值的理念下,去除界面活性劑的使用,使矽酸鹽在沒有結構導引的情況下自然地縮合產生大小均一且可調控的12-30 nm的二氧化矽小顆粒,當顆粒彼此堆積膠連會形成孔徑分佈極寬(6-50 nm)且高總孔體積(>1.6 cm3g-1)的二氧化矽奈米孔洞材料。除此之外,於合成系統中添加適當的金屬前驅物,亦可以一步驟共沉澱出負載高分散性金屬的二氧化矽奈米孔洞材料。我們更深入地分析鑑定負載銅的二氧化矽奈米孔洞材料後發現,此材料中銅與二氧化矽載體的作用較強,導致銅不易被還原及活化,進而影響了催化活性的表現。因此,我們以降低銅與二氧化矽間的作用為修正之方向,藉由調整合成步驟中加入金屬前驅物的時間點,經過鍛燒活化後,顯著地提升了其於丙烯選擇性氧化反應中的催化效能,丙烯醛產率可達5.7%,雖然與其他的銅觸媒相比沒有突破性的表現,但依循降低金屬與載體的作用進行改良,預期能獲得更佳的催化效果。
This thesis aimed to synthesize nanoporous silica materials by
using the simple "pH-jump "method. Base on the idea of eco-friendly responsibility and raising economic value, surfactants will not be used. In the absence of structural guidance, silicate species naturally condense into small and tunable 12-30 nm silica particles of a uniform size. When the particles are glued together, they form the nanoporous silica material with extremely wide pore size distribution (6-50 nm) and a high total pore volume (>1.6 cc/g). Furthermore, adding suitable metal complexes in the synthesis mixture could also achieve co-precipitation of highly dispersed metal-containing nanoporous silica materials. After further analysis of the copper-containing nanoporous silica material, we found that the copper species in this material have stronger interaction with silica support, resulting in the copper being hard to hydrogen reduction, and thus affecting the catalytic activity. Therefore, in order to reduce the interaction between copper and silica support, we adjusted the timing of adding the metal precursor and activated them by calcination. By such approach, the activity of selective oxidation of propylene was significantly improved. The yield of acrolein can reach 5.7%. Although there are no breakthrough performance compared with other copper catalysts, we expected that a better catalytic effect can be obtained by tuning the interaction between the metal and the silica support.
1. Ciesla, U.; Schüth, F., Ordered mesoporous materials. Microporous and Mesoporous Materials 1999, 27 (2), 131 -149.
2. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548-552.
3. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society 1998, 120 (24), 6024-6036.
4. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
5. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism. Nature 1992, 359, 710.
6. Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.; Joo, S. H.; Ryoo, R., Structural Study of Mesoporous MCM-48 and Carbon Networks Synthesized in the Spaces of MCM-48 by Electron Crystallography. The Journal of Physical Chemistry B 2002, 106 (6), 1256-1266.
7. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based
Approaches to the Preparation of Amorphous, Nanoporous Silicas.
Chemistry of Materials 1996, 8 (8), 1682-1701.
8. Wan, Y.; Zhao, On the Controllable Soft-Templating Approach to
Mesoporous Silicates. Chemical Reviews 2007, 107 (7), 2821-2860.
9. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R., Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 2000, 408, 449.
10. Martin, C. R., Nanomaterials: A Membrane-Based Synthetic
Approach. Science 1994, 266 (5193), 1961 -1966.
11. Imhof, A.; Pine, D. J., Ordered macroporous materials by emulsion templating. Nature 1997, 389, 948.
12. Banerjee, S.; Sereda, G., One-step, three-component synthesis of highly substituted pyridines using silica nanoparticle as reusable catalyst. Tetrahedron Letters 2009, 50 (50), 6959-6962.
13. Westcott, S. L.; Oldenburg, S. J.; Lee, T. R.; Halas, N. J., Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces. Langmuir 1998, 14 (19), 5396-5401.
14. Yokoi, T.; Wakabayashi, J.; Otsuka, Y.; Fan, W.; Iwama, M.;
Watanabe, R.; Aramaki, K.; Shimojima, A.; Tatsumi, T.; Okubo, T.,
Mechanism of Formation of Uniform-Sized Silica Nanospheres
Catalyzed by Basic Amino Acids. Chemistry of Materials 2009, 21
(15), 3719-3729.
15. Benjamin, W. T.; Ronald, E. U.; Hans-Georg, N.; Kirkpatrick, C. J., Biocompatibility studies of endothelial cells on a novel calcium phosphate/SiO2-xerogel composite for bone tissue engineering. Biomedical Materials 2008, 3 (1), 015007.
16. Sakamoto, Y.; Kuroda, Y.; Toko, S.; Ikeda, T.; Matsui, T.; Kuroda, K., Electron Microscopy Study of Binary Nanocolloidal Crystals with ico-AB13 Structure Made of Monodisperse Silica Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (27), 15004-15010.
17. Kuroda, Y.; Shimbo, Y.; Sakamoto, Y.; Wada, H.; Kuroda, K., A
Mesoporous Superlattice Consisting of Alternately Stacking
Interstitial Nanospace within Binary Silica Colloidal Crystals.
Angewandte Chemie 2016, 128 (36), 10860-10864.
18. Evans, D. F. W., H., The colloidal domain. VCH: Wiley,New York: 1999.
19. Hench, L. L.; West, J. K., The sol-gel process. Chemical Reviews 1990, 90 (1), 33-72.
20. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H., Evaporation‐Induced Self‐ Assembly: Nanostructures Made Easy. Advanced Materials 1999, 11 (7), 579-585.
21. Iler, R. K., The Chemistry of Silica. Wiley, New York: 1979.
22. Landry, C. J. T.; Coltrain, B. K.; Wesson, J. A.; Zumbulyadis, N.; Lippert, J. L., In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions. Polymer 1992, 33 (7), 1496-1506.
23. Lin, H.-P.; Mou, C.-Y., Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica. Accounts of Chemical Research 2002, 35 (11), 927-935.
24. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368, 317.
25. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica‐ Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte
Chemie International Edition 2006, 45 (20), 3216-3251.
26. Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C., Block copolymer-templated mesoporous oxides. Current Opinion in Colloid & Interface Science 2003, 8 (1), 109-126.
27. Yang, C.-M.; Lin, C.-Y.; Sakamoto, Y.; Huang, W.-C.; Chang, L.-L., 2D-Rectangular c2mm mesoporous silica nanoparticles with tunable elliptical channels and lattice dimensions. Chemical Communications 2008, (45), 5969-5971.
28. Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F., Alkaline Lyotropic Silicate−Surfactant Liquid Crystals. Journal of the American Chemical Society 1997, 119 (15), 3596-3610.
29. Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F., Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chemistry of Materials 1994, 6 (8), 1176-1191.
30. Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.;
Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F., Cooperative Formation of InorganicOrganic Interfaces in the Synthesis of Silicate Mesostructures. Science 1993, 261 (5126), 1299-1303.
31. Garrett, P. R. e., Defoaming: Theory and IndustrialApplications,.1992.
32. Yu, Y.-Y.; Chen, W.-C., Transparent organic–inorganic hybrid thin films prepared from acrylic polymer and aqueous monodispersed
colloidal silica. Materials Chemistry and Physics 2003, 82 (2), 388-395.
33. Bourgeat-Lami, E.; Lang, J., Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media: 1. Silica Nanoparticles Encapsulated by Polystyrene. Journal of Colloid and Interface Science 1998, 197 (2), 293-308.
34. Method for preventing agglomeration of colloidal silica and silicon wafer polishing composition using the same (US5226930A). 1993.
35. Zhou, S.; Wu, L.; Sun, J.; Shen, W., The change of the properties of acrylic-based polyurethane via addition of nano-silica. Progress in Organic Coatings 2002, 45 (1), 33-42.
36. Wu, C. L.; Zhang, M. Q.; Rong, M. Z.; Friedrich, K., Tensile
performance improvement of low nanoparticles filled-polypropylene
composites. Composites Science and Technology 2002, 62 (10), 1327-
1340.
37. Tsai, M.-S.; Huang, P. Y.; Wu, W.-C., The study of formation process of colloidal silica. Materials Research Bulletin 2005, 40 (9), 1609-1616.
38. Tsai, M.-S., The study of formation colloidal silica via sodium silicate. Materials Science and Engineering: B 2004, 106 (1), 52-55.
39. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 1968, 26 (1), 62-69.
40. Lee, Y.-K.; Rock Yoon, Y.; Rhee, H.-K., Preparation of colloidal silica using peptization method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2000, 173 (1), 109-116.
41. Lim, H. M.; Shin, H. C.; Huh, S. H.; Lee, S. H., Effect of Catalyst on the Colloidal Silica Particle Growth in Direct Oxidation of Silicon. Solid State Phenomena 2007, 124-126, 667-670.
42. Na, W. K.; Lim, H. M.; Huh, S. H.; Park, S. E.; Lee, Y.-S.; Lee, S. H., Effect of the average particle size and the surface oxidation layer of silicon on the colloidal silica particle through direct oxidation. Materials Science and Engineering: B 2009, 163 (2), 82-87.
43. Lim, H. M.; Lee, J.; Jeong, J.-H.; Oh, S.-G.; Lee, S.-H., Comparative Study of Various Preparation Methods of Colloidal Silica. Engineering 2010, Vol.02No.12, 4.
44. Taguchi, A.; Schüth, F., Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials 2005, 77 (1), 1 -45.
45. Munnik, P.; de Jongh, P. E.; de Jong, K. P., Recent Developments in the Synthesis of Supported Catalysts. Chemical Reviews 2015, 115 (14), 6687-6718.
46. John Meuring Thomas, W. J. T., Principles and Practice of
Heterogeneous Catalysis. VCH: New York 1997. 1997.
47. Behrens, M.; Brennecke, D.; Girgsdies, F.; Kißner, S.; Trunschke, A.; Nasrudin, N.; Zakaria, S.; Idris, N. F.; Hamid, S. B. A.; Kniep, B.; Fischer, R.; Busser, W.; Muhler, M.; Schlögl, R., Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments. Applied Catalysis A: General 2011, 392 (1), 93-102.
48. Baltes, C.; Vukojević, S.; Schüth, F., Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. Journal of Catalysis 2008, 258 (2), 334-344.
49. Burattin, P.; Che, M.; Louis, C., Molecular Approach to the
Mechanism of Deposition−Precipitation of the Ni(II) Phase on Silica. The Journal of Physical Chemistry B 1998, 102 (15), 2722-2732.
50. Hugon, A.; Kolli, N. E.; Louis, C., Advances in the preparation of supported gold catalysts: Mechanism of deposition, simplification of the procedures and relevance of the elimination of chlorine. Journal of Catalysis 2010, 274 (2), 239-250.
51. Murzin, D. Y.; Simakova, O. A.; Simakova, I. L.; Parmon, V. N., Thermodynamic analysis of the cluster size evolution in catalyst preparation by deposition–precipitation. Reaction Kinetics, Mechanisms and Catalysis 2011, 104 (2), 259-266.
52. Anastas, P.; Eghbali, N., Green Chemistry: Principles and Practice. Chemical Society Reviews 2010, 39 (1), 301 -312.
53. Cortright, R. D.; Dumesic, J. A., Microcalorimetric, Spectroscopic, and Kinetic Studies of Silica Supported Pt and Pt/Sn Catalysts for Isobutane Dehydrogenation. Journal of Catalysis 1994, 148 (2), 771 -778.
54. Yao, N.; Pinckney, C.; Lim, S.; Pak, C.; Haller, G. L., Synthesis and characterization of Pt/MCM-41 catalysts. Microporous and Mesoporous Materials 2001, 44-45, 377-384.
55. Yang, C.-M.; Lin, H.-A.; Zibrowius, B.; Spliethoff, B.; Schüth, F.; Liou, S.-C.; Chu, M.-W.; Chen, C.-H., Selective Surface Functionalization and Metal Deposition in the Micropores of Mesoporous Silica SBA-15. Chemistry of Materials 2007, 19 (13),
3205-3211.
56. Hahn, C.; Morvillo, P.; Vitagliano, A., Olefins Coordinated at a Highly Electrophilic Site − Dicationic Palladium(II) Complexes and Their Equilibrium Reactions with Nucleophiles. European Journal of Inorganic Chemistry 2001, 2001 (2), 419-429.
57. Linares, N.; Serrano, E.; Rico, M.; Mariana Balu, A.; Losada, E.; Luque, R.; Garcia-Martinez, J., Incorporation of chemical
functionalities in the framework of mesoporous silica. Chemical
Communications 2011, 47 (32), 9024-9035.
58. Jin, Q.; Lin, C.-Y.; Kang, S.-T.; Chang, Y.-C.; Zheng, H.; Yang, C.-M.; Yeh, C.-K., Superhydrophobic silica nanoparticles as ultrasound contrast agents. Ultrasonics Sonochemistry 2017, 36, 262-269.
59. Thomas, J. M. T., W. J., Principles and practice of heterogeneous catalysis; Wiley-VCH: Weinheim, 1996. 1996.
60. Bracey, C. L.; Carley, A. F.; Edwards, J. K.; Ellis, P. R.; Hutchings, G. J., Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catalysis Science & Technology 2011, 1 (1), 76-85.
61. Liu, L.; Ye, X. P.; Bozell, J. J., A Comparative Review of Petroleum‐Based and Bio‐Based Acrolein Production. ChemSusChem 2012, 5 (7), 1162-1180.
62. Bettahar, M. M.; Costentin, G.; Savary, L.; Lavalley, J. C., On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Applied Catalysis A: General 1996, 145 (1), 1-48.
63. Adams, C. R.; Jennings, T. J., Mechanism studies of the catalytic oxidation of propylene. Journal of Catalysis 1964, 3 (6), 549-558.
64. Yu, J. S.; Kevan, L., Catalytic partial oxidation of propylene to acrolein over copper(II)-exchanged M-X and M-Y zeolites where M
= Mg2+, Ca2+, Li+, Na+, K+, and H+: evidence for separate pathways
for partial and complete oxidation. The Journal of Physical Chemistry 1991, 95 (8), 3262-3271.
65. Yu, J. S.; Kevan, L., Effects of reoxidation and water vapor on selective partial oxidation of propylene to acrolein in copper(II)-exchanged X and Y zeolites. The Journal of Physical Chemistry 1991, 95 (17), 6648-6653.
66. Liu, C.-H.; Lai, N.-C.; Lee, J.-F.; Chen, C.-S.; Yang, C.-M., SBA-15-supported highly dispersed copper catalysts: Vacuum–thermal
preparation and catalytic studies in propylene partial oxidation to acrolein. Journal of Catalysis 2014, 316, 231 -239.
67. Reitz, J. B.; Solomon, E. I., Propylene Oxidation on Copper Oxide Surfaces: Electronic and Geometric Contributions to Reactivity and Selectivity. Journal of the American Chemical Society 1998, 120 (44), 11467-11478.
68. Haber, J.; Turek, W., Kinetic Studies as a Method to Differentiate between Oxygen Species Involved in the Oxidation of Propene. Journal of Catalysis 2000, 190 (2), 320-326.
69. Su, W.; Wang, S.; Ying, P.; Feng, Z.; Li, C., A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using O2 as oxidant. Journal of Catalysis 2009, 268 (1), 165-174.
70. Vaughan, O. P. H.; Kyriakou, G.; Macleod, N.; Tikhov, M.; Lambert, R. M., Copper as a selective catalyst for the epoxidation of propene. Journal of Catalysis 2005, 236 (2), 401 -404.
71. Düzenli, D.; Atmaca, D. O.; Gezer, M. G.; Onal, I., A density
functional theory study of partial oxidation of propylene on
Cu2O(001) and CuO(001) surfaces. Applied Surface Science 2015,
355, 660-666.
72. Zhu, W.; Zhang, Q.; Wang, Y., Cu(I)-Catalyzed Epoxidation of
Propylene by Molecular Oxygen. The Journal of Physical Chemistry
C 2008, 112 (20), 7731 -7734.
73. Wang, Y.; Chu, H.; Zhu, W.; Zhang, Q., Copper-based efficient
catalysts for propylene epoxidation by molecular oxygen. Catalysis
Today 2008, 131 (1), 496-504.
74. Lai, N.-C.; Lin, C.-J.; Huang, W.-C.; Yang, C.-M., “pH-jump”
synthesis of 2D-rectangular c2mm mesoporous silica materials with
helical morphology and extensive void defects. Microporous and
Mesoporous Materials 2014, 190, 67-73.
75. Lu, J.; Kosuda, K. M.; Van Duyne, R. P.; Stair, P. C., Surface Acidity and Properties of TiO2/SiO2 Catalysts Prepared by Atomic Layer Deposition: UV−visible Diffuse Reflectance, DRIFTS, and Visible Raman Spectroscopy Studies. The Journal of Physical Chemistry C 2009, 113 (28), 12412-12418.
76. Wu, L.; Deng, X.; Zhao, S.; Yin, H.; Zhuo, Z.; Fang, X.; Liu, Y.; He, M., Synthesis of a highly active oxidation catalyst with improved distribution of titanium coordination states. Chemical
Communications 2016, 52 (56), 8679-8682.
77. Rathousky, J.; Schulz-Ekloff, G.; Had, J.; Zukal, A., Time-resolved insitu X-ray diffraction study of MCM-41 structure formation from a homogeneous environment. Physical Chemistry Chemical Physics 1999, 1 (12), 3053-3057.
78. Schulz-Ekloff, G.; Rathouský, J.; Zukal, A., Mesoporous silica with controlled porous structure and regular morphology. International Journal of Inorganic Materials 1999, 1 (1), 97-102.
79. Ben Sasson, M.; Adin, A., Fouling mechanisms and energy appraisal in microfiltration pretreated by aluminum-based electroflocculation. Journal of Membrane Science 2010, 352 (1), 86-94.
80. Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R., Synthesis of ultrasmall, homogeneously alloyed, bimetallic
nanoparticles on silica supports. Science 2017, 358 (6369), 1427-
1430.
81. Wolf, M.; Fischer, N.; Claeys, M., Effectiveness of catalyst
passivation techniques studied in situ with a magnetometer. Catalysis Today 2016, 275, 135-140.
82. Rognmo, A. U.; Heldal, S.; Fernø, M. A., Silica nanoparticles to stabilize CO2-foam for improved CO2 utilization: Enhanced CO2
storage and oil recovery from mature oil reservoirs. Fuel 2018, 216, 621 -626.
83. Kim, C. E.; Yoon, J. S.; Hwang, H. J., Synthesis of nanoporous silica aerogel by ambient pressure drying. Journal of Sol-Gel Science and Technology 2008, 49 (1), 47.
84. Livage, J.; Henry, M.; Sanchez, C., Sol-gel chemistry of transition metal oxides. Progress in Solid State Chemistry 1988, 18 (4), 259-341.
85. Ellingsworth, E. C.; Turner, B.; Szulczewski, G., Thermal conversion of [Fe(phen)3](SCN)2 thin films into the spin crossover complex Fe(phen)2(NCS)2. RSC Advances 2013, 3 (11), 3745-3754.
86. Kumar, A.; Kumar, P.; Joshi, C.; Ponnada, S.; Pathak, A. K.; Ali, A.; Sreedhar, B.; Jain, S. L., A [Fe(bpy)3]2+ grafted graphitic carbon nitride hybrid for visible light assisted oxidative coupling of benzylamines under mild reaction conditions. Green Chemistry 2016, 18 (8), 2514-2521.
87. Velu, S.; Suzuki, K.; Okazaki, M.; Kapoor, M. P.; Osaki, T.; Ohashi, F., Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation. Journal of Catalysis 2000, 194 (2), 373-384.
88. Yoshida, H.; Shimizu, T.; Murata, C.; Hattori, T., Highly dispersed zinc oxide species on silica as active sites for photoepoxidation of propene by molecular oxygen. Journal of Catalysis 2003, 220 (1), 226-232.
89. Zhang, G.; Long, J.; Wang, X.; Zhang, Z.; Dai, W.; Liu, P.; Li, Z.; Wu, L.; Fu, X., Catalytic Role of Cu Sites of Cu/MCM-41 in Phenol Hydroxylation. Langmuir 2010, 26 (2), 1362-1371.
90. Kuśtrowski, P.; Chmielarz, L.; Dziembaj, R.; Cool, P.; Vansant, E. F., Modification of MCM-48-, SBA-15-, MCF-, and MSU-type Mesoporous Silicas with Transition Metal Oxides Using the
Molecular Designed Dispersion Method. The Journal of Physical
Chemistry B 2005, 109 (23), 11552-11558.
91. Ramakrishna Prasad, M.; Kamalakar, G.; Kulkarni, S. J.; Raghavan, K. V., Synthesis of binaphthols over mesoporous molecular sieves. Journal of Molecular Catalysis A: Chemical 2002, 180 (1), 109-123.
92. Van Der Grift, C. J. G.; Mulder, A.; Geus, J. W., Characterization of silica-supported copper catalysts by means of temperatureprogrammed reduction. Applied Catalysis 1990, 60 (1), 181 -192.
93. Hartmann, M.; Racouchot, S.; Bischof, C., Characterization of copper and zinc containing MCM-41 and MCM-48 mesoporous molecular
sieves by temperature programmed reduction and carbon monoxide
adsorption. Microporous and Mesoporous Materials 1999, 27 (2),
309-320.
94. Martell, E., Chemistry of the metal chelate compounds. 1952.
95. Stangland, E. E.; Taylor, B.; Andres, R. P.; Delgass, W. N., Direct Vapor Phase Propylene Epoxidation over Deposition-Precipitation Gold-Titania Catalysts in the Presence of H2/O2: Effects of Support, Neutralizing Agent, and Pretreatment. The Journal of Physical Chemistry B 2005, 109 (6), 2321 -2330.
96. Gaur, A.; Shrivastava, B. D.; Joshi, S. K., Copper K-edge XANES of Cu(I) and Cu(II) oxide mixtures. Journal of Physics: Conference Series 2009, 190 (1), 012084.
97. Grandjean, D.; Pelipenko, V.; Batyrev, E. D.; van den Heuvel, J. C.; Khassin, A. A.; Yurieva, T. M.; Weckhuysen, B. M., Dynamic Cu/Zn Interaction in SiO2 Supported Methanol Synthesis Catalysts
Unraveled by in Situ XAFS. The Journal of Physical Chemistry C
2011, 115 (41), 20175-20191.
98. Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.; Hodgson, K. O.; Solomon, E. I., X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen. Journal of the American Chemical Society 1987, 109 (21), 6433-6442.
99. Kristiansen, T.; Mathisen, K.; Einarsrud, M.-A.; Bjørgen, M.;
Nicholson, D. G., Single-Site Copper by Incorporation in Ambient
Pressure Dried Silica Aerogel and Xerogel Systems: An X-ray
Absorption Spectroscopy Study. The Journal of Physical Chemistry C
2011, 115 (39), 19260-19268.
100. Chen, C. S.; Lai, Y. T.; Lai, T. W.; Wu, J. H.; Chen, C. H.; Lee, J. F.; Kao, H. M., Formation of Cu Nanoparticles in SBA-15 Functionalized with Carboxylic Acid Groups and Their Application in the Water–Gas Shift Reaction. ACS Catalysis 2013, 3 (4), 667-677.
101. Moen, A.; Nicholson, D. G.; Ronning, M., Studies on the pre-edge region of the X-ray absorption spectra of copper(I) oxide and the diamminecopper(I) ion. Journal of the Chemical Society, Faraday Transactions 1995, 91 (18), 3189-3194.
102. Takezawa, N.; Kobayashi, H.; Hirose, A.; Shimokawabe, M.;
Takahashi, K., Steam reforming of methanol on copper-silica
catalysts; effect of copper loading and calcination temperature on the reaction. Applied Catalysis 1982, 4 (2), 127-134.
103. Gerasimova, T. P.; Katsyuba, S. A., Bipyridine and phenanthroline IRspectral bands as indicators of metal spin state in hexacoordinated complexes of Fe(ii), Ni(ii) and Co(ii). Dalton Transactions 2013, 42 (5), 1787-1797.
104. Szegedi, Á .; Kónya, Z.; Méhn, D.; Solymár, E.; Pál-Borbély, G.; Horváth, Z. E.; Biró, L. P.; Kiricsi, I., Spherical mesoporous MCM-41 materials containing transition metals: synthesis and
characterization. Applied Catalysis A: General 2004, 272 (1), 257-
266.
105. Zhou, J.; Xia, Q. H.; Shen, S. C.; Kawi, S.; Hidajat, K., Catalytic oxidation of pyridine on the supported copper catalysts in the presence of excess oxygen. Journal of Catalysis 2004, 225 (1), 128-137.
106. Van Der Grift, C. J. G.; Wielers, A. F. H.; Jogh, B. P. J.; Van Beunum, J.; De Boer, M.; Versluijs-Helder, M.; Geus, J. W., Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles. Journal of Catalysis 1991, 131 (1), 178-189.
107. Sato, S.; Takahashi, R.; Sodesawa, T.; Yuma, K.-i.; Obata, Y., Distinction between Surface and Bulk Oxidation of Cu through N2O Decomposition. Journal of Catalysis 2000, 196 (1), 195-199.