研究生: |
劉羅元 Liu, Lo-Yuan |
---|---|
論文名稱: |
光交聯與降解雙控型明膠水凝膠之開發 Dual controlled photocrosslinkable and photodegradable gelatin hydrogel regeneration |
指導教授: |
陳盈潔
Chen, Ying-Chieh |
口試委員: |
魯才德
Lu, Tsai-Te 黃玠誠 Huang, Chieh-Cheng 陳冠宇 Chen, Guan-Yu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 明膠 、光交聯 、光降解 、雙向調控 、細胞培養 |
外文關鍵詞: | gelatin, photocrosslinkable, photodegradable, dual control, cell culture |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可植入填充物在臨床及生物醫學應用上已被廣泛應用,如骨骼肌修復、組織再生、藥物釋放、癌症治療等等,然而,植入後總會出現一些意想不到的問題,例如嚴重免疫反應或是需要對植入物進行調整,而需要再次手術去除植入物;在腫瘤治療方面,也需要水凝膠控制藥物釋放時間與模擬體內環境來幫助組織修復的功能,近年來,已經開發出許多可調控水凝膠以克服這些難題,但大多數都只擁有一個方向的調控機制來調整其機械性質,這導致水凝膠只能不可逆的增加或降低其剛度,若調控過度沒有補救方法,只能重新製作,而且也無法很好的模擬不斷變化的體內環境。在本篇研究中,我們將明膠與二苯基環辛炔(Dibenzocyclooctyne, DBCO)、可光降解分子鄰硝基芐基-疊氮化物(NBazide)和可光交聯分子甲基丙烯酰胺(methacrylamide, MA)結合,先利用DBCO與NBazide之間的點擊反應成膠,再以MA的光交聯特性與NBazide的光降解特性來達成可逆的水凝膠機械性質的雙向控制,透過包覆小鼠胚胎成纖維細胞(NIH3T3)以觀察機械性質的雙向調控對於細胞生長行為的影響,結果表明,此明膠基雙向調控水凝膠具有良好的生物相容性,暴露於紫外線後交聯和降解過程中的副產物對細胞無害,並且能通過對水凝膠的調控來影響細胞的增殖與伸展,此以明膠為基底製作的水凝膠未來在再生醫學和組織工程方面的應用具有巨大的潛力。
Implantable fillers have been widely used in clinical and biomedical applications, such as skeletal muscle repair, tissue regeneration, drug release, cancer treatment …. etc. There always come out some unexpected problems following implantation, such as severe immune reactions or the need for implant adjustments, which need another surgery to remove implants. In tumor treatment, hydrogels are also required to control the drug release time and simulate the in vivo environment to help tissue repair. Recently, many types of hydrogel with controllable stiffness have been developed to overcome these problems, but most of them possess either irreversible increase or decrease their stiffness. It is no easy to post-tune hydrogel stiffness after gelation process, which limits its applications in mimicking microenvironments in animals.
Here, we conjugated Dibenzocyclooctyne (DBCO), photodegradable molecules (nitrobenzyl-azide, NBazide) and photocrosslinkable molecules (methacrylamide, MA) on gelatin molecules to synthesis gelatin-based hydrogels. First, the hydrogel was capable to crosslink by the click reaction between DBCO and NBazide and the light through MA gorups, and degraded by photodegradable NBazide to achieve two-direction control of the hydrogel mechanical property, which is reversible. Then, we encapsulated NIH3T3 cells into our hydrogel to evaluate the effect of dynamic stiffness of hydrogels on cell behavior. Result demonstrated that this gelatin-based hydrogel is biocompatible, and byproduct during crosslinking and degradation after exposing to UV light was shown harmless to cells. Cell proliferation and spreading could be controlled by controlling the mechanical property of the hydrogel, which represented that our gels have great potential used in regenerative medicine and tissue engineering.
1. Novosel, E.C., C. Kleinhans, and P.J. Kluger, Vascularization is the key challenge in tissue engineering. Advanced drug delivery reviews, 2011. 63(4-5): p. 300-311.
2. Khademhosseini, A. and R. Langer, A decade of progress in tissue engineering. Nature protocols, 2016. 11(10): p. 1775-1781.
3. Huynh, V., et al., Influence of hydrophobic cross-linkers on carboxybetaine copolymer stimuli response and hydrogel biological properties. Langmuir, 2018. 35(5): p. 1631-1641.
4. Griffin, D.R., et al., Synthesis of photodegradable macromers for conjugation and release of bioactive molecules. Biomacromolecules, 2013. 14(4): p. 1199-1207.
5. Hoare, T.R. and D.S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer, 2008. 49(8): p. 1993-2007.
6. Lee, K.Y. and D.J. Mooney, Hydrogels for tissue engineering. Chemical reviews, 2001. 101(7): p. 1869-1880.
7. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
8. Sivashanmugam, A., et al., An overview of injectable polymeric hydrogels for tissue engineering. European Polymer Journal, 2015. 72: p. 543-565.
9. Azagarsamy, M.A., et al., Coumarin-based photodegradable hydrogel: Design, synthesis, gelation, and degradation kinetics. ACS Macro Letters, 2014. 3(6): p. 515-519.
10. Zhang, Z.X., K.L. Liu, and J. Li, A thermoresponsive hydrogel formed from a star–star supramolecular architecture. Angewandte Chemie International Edition, 2013. 52(24): p. 6180-6184.
11. Ehrbar, M., et al., Drug-sensing hydrogels for the inducible release of biopharmaceuticals. Nature materials, 2008. 7(10): p. 800-804.
12. Truong, V.X., et al., Photodegradable gelatin-based hydrogels prepared by bioorthogonal click chemistry for cell encapsulation and release. Biomacromolecules, 2015. 16(7): p. 2246-2253.
13. Norris, S.C., S.M. Delgado, and A.M. Kasko, Mechanically robust photodegradable gelatin hydrogels for 3D cell culture and in situ mechanical modification. Polymer Chemistry, 2019. 10(23): p. 3180-3193.
14. Claaßen, C., et al., Photoinduced Cleavage and Hydrolysis of o‐Nitrobenzyl Linker and Covalent Linker Immobilization in Gelatin Methacryloyl Hydrogels. Macromolecular bioscience, 2018. 18(9): p. 1800104.
15. Yanagawa, F., et al., Activated‐Ester‐Type Photocleavable Crosslinker for Preparation of Photodegradable Hydrogels Using a Two‐Component Mixing Reaction. Advanced healthcare materials, 2015. 4(2): p. 246-254.
16. Tsang, K.M., et al., Facile One‐Step Micropatterning Using Photodegradable Gelatin Hydrogels for Improved Cardiomyocyte Organization and Alignment. Advanced functional materials, 2015. 25(6): p. 977-986.
17. Xiao, S., et al., Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Reviews and Reports, 2019. 15(5): p. 664-679.
18. Huynh, C.T., et al., Light-triggered RNA release and induction of hMSC osteogenesis via photodegradable, dual-crosslinked hydrogels. Nanomedicine, 2016. 11(12): p. 1535-1550.
19. Sridhar, B.V., et al., Thermal stabilization of biologics with photoresponsive hydrogels. Biomacromolecules, 2018. 19(3): p. 740-747.
20. Tamura, M., et al., Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment. Scientific reports, 2015. 5: p. 15060.
21. Chen, Y.C., et al., Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Advanced functional materials, 2012. 22(10): p. 2027-2039.
22. Van Vlierberghe, S., P. Dubruel, and E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011. 12(5): p. 1387-1408.
23. Kabiri, K. and M.J. Zohuriaan‐Mehr, Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromolecular Materials and Engineering, 2004. 289(7): p. 653-661.
24. Zhu, J. and R.E. Marchant, Design properties of hydrogel tissue-engineering scaffolds. Expert review of medical devices, 2011. 8(5): p. 607-626.
25. Peng, K., et al., Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter, 2011. 7(10): p. 4881-4887.
26. Peppas, N.A., et al., Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced materials, 2006. 18(11): p. 1345-1360.
27. Annabi, N., et al., Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering Part B: Reviews, 2010. 16(4): p. 371-383.
28. Garg, T., et al., Scaffold: a novel carrier for cell and drug delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2012. 29(1).
29. Munoz‐Robles, B.G., I. Kopyeva, and C.A. DeForest, Surface patterning of hydrogel biomaterials to probe and direct cell–matrix interactions. Advanced Materials Interfaces, 2020. 7(21): p. 2001198.
30. Li, Y., J. Rodrigues, and H. Tomas, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews, 2012. 41(6): p. 2193-2221.
31. DeForest, C.A. and K.S. Anseth, Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nature chemistry, 2011. 3(12): p. 925.
32. Okay, O., General properties of hydrogels, in Hydrogel sensors and actuators. 2009, Springer. p. 1-14.
33. Chung, H.J. and T.G. Park, Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today, 2009. 4(5): p. 429-437.
34. Hennink, W.E. and C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Advanced drug delivery reviews, 2012. 64: p. 223-236.
35. Liu, S.Q., et al., Synthetic hydrogels for controlled stem cell differentiation. Soft Matter, 2010. 6(1): p. 67-81.
36. Nguyen, K.T. and J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002. 23(22): p. 4307-4314.
37. Zhu, J., Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials, 2010. 31(17): p. 4639-4656.
38. Tasdelen, M.A. and Y. Yagci, Light‐induced click reactions. Angewandte Chemie International Edition, 2013. 52(23): p. 5930-5938.
39. Kolb, H.C., M. Finn, and K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 2001. 40(11): p. 2004-2021.
40. Jiang, Y., et al., Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014. 35(18): p. 4969-4985.
41. Rostovtsev, V.V., et al., A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie, 2002. 114(14): p. 2708-2711.
42. Franc, G. and A.K. Kakkar, Diels–Alder “click” chemistry in designing dendritic macromolecules. Chemistry–A European Journal, 2009. 15(23): p. 5630-5639.
43. Kumaraswamy, G., K. Ankamma, and A. Pitchaiah, Tandem epoxide or aziridine ring opening by azide/copper catalyzed [3+ 2] cycloaddition: Efficient synthesis of 1, 2, 3-triazolo β-hydroxy or β-tosylamino functionality motif. The Journal of organic chemistry, 2007. 72(25): p. 9822-9825.
44. Heredia, K.L., Z.P. Tolstyka, and H.D. Maynard, Aminooxy end-functionalized polymers synthesized by ATRP for chemoselective conjugation to proteins. Macromolecules, 2007. 40(14): p. 4772-4779.
45. Campos, L.M., et al., Development of thermal and photochemical strategies for thiol− ene click polymer functionalization. Macromolecules, 2008. 41(19): p. 7063-7070.
46. Zou, Y., et al., “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. Journal of controlled release, 2018. 273: p. 160-179.
47. Mather, B.D., et al., Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science, 2006. 31(5): p. 487-531.
48. Liu, H. and H. Chung, Visible-light induced thiol–ene reaction on natural lignin. ACS Sustainable Chemistry & Engineering, 2017. 5(10): p. 9160-9168.
49. Ossipov, D.A. and J. Hilborn, Poly (vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules, 2006. 39(5): p. 1709-1718.
50. Prescher, J.A., D.H. Dube, and C.R. Bertozzi, Chemical remodelling of cell surfaces in living animals. Nature, 2004. 430(7002): p. 873-877.
51. Laughlin, S.T., et al., In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 2008. 320(5876): p. 664-667.
52. DeForest, C.A., B.D. Polizzotti, and K.S. Anseth, Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nature materials, 2009. 8(8): p. 659-664.
53. Zhang, J., et al., A 3D‐Printed Self‐Adhesive Bandage with Drug Release for Peripheral Nerve Repair. Advanced Science, 2020. 7(23): p. 2002601.
54. Shih, H. and C.-C. Lin, Cross-linking and degradation of step-growth hydrogels formed by thiol–ene photoclick chemistry. Biomacromolecules, 2012. 13(7): p. 2003-2012.
55. Fairbanks, B.D., et al., A versatile synthetic extracellular matrix mimic via thiol‐norbornene photopolymerization. Advanced materials, 2009. 21(48): p. 5005-5010.
56. Cui, J., et al., Synthetically simple, highly resilient hydrogels. Biomacromolecules, 2012. 13(3): p. 584-588.
57. Wei, H.-L., et al., Thermosensitive hydrogels synthesized by fast Diels–Alder reaction in water. Polymer, 2009. 50(13): p. 2836-2840.
58. Koehler, K.C., K.S. Anseth, and C.N. Bowman, Diels–Alder mediated controlled release from a poly (ethylene glycol) based hydrogel. Biomacromolecules, 2013. 14(2): p. 538-547.
59. Liu, D., et al., Collagen and gelatin. Annual review of food science and technology, 2015. 6: p. 527-557.
60. Elisabettacenni, et al., Biocompatibility and performance in vitro of a hemostatic gelatin sponge. Journal of Biomaterials Science, Polymer Edition, 2000. 11(7): p. 685-699.
61. Sela, M. and R. Arnon, Studies on the chemical basis of the antigenicity of proteins. 1. Antigenicity of polypeptidyl gelatins. Biochemical Journal, 1960. 75(1): p. 91-102.
62. Naahidi, S., et al., Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology advances, 2017. 35(5): p. 530-544.
63. Panduranga Rao, K., Recent developments of collagen-based materials for medical applications and drug delivery systems. Journal of Biomaterials Science, Polymer Edition, 1996. 7(7): p. 623-645.
64. Chvapil, M., Considerations on manufacturing principles of a synthetic burn dressing: a review. Journal of biomedical materials research, 1982. 16(3): p. 245-263.
65. Barker, H., et al., Formaldehyde as a pre-treatment for dermal collagen heterografts. Biochimica et Biophysica Acta (BBA)-General Subjects, 1980. 632(4): p. 589-597.
66. Elzoghby, A.O., Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. Journal of Controlled Release, 2013. 172(3): p. 1075-1091.
67. Choi, Y.S., et al., Studies on gelatin‐containing artificial skin: II. Preparation and characterization of cross‐linked gelatin‐hyaluronate sponge. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 1999. 48(5): p. 631-639.
68. Damink, L.O., et al., Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. Journal of materials science: materials in medicine, 1995. 6(8): p. 460-472.
69. Sung, H.-W., et al., Cross-linking characteristics of biological tissues fixed with monofunctional or multifunctional epoxy compounds. Biomaterials, 1996. 17(14): p. 1405-1410.
70. Tomihata, K., et al., Cross-linking and biodegradation of native and denatured collagen. 1994.
71. Gendler, E., S. Gendler, and M. Nimni, Toxic reactions evoked by glutaraldehyde‐fixed pericardium and cardiac valve tissue bioprosthesis. Journal of biomedical materials research, 1984. 18(7): p. 727-736.
72. Van Den Bulcke, A.I., et al., Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000. 1(1): p. 31-38.
73. Tigner, T.J., et al., Comparison of photo cross linkable gelatin derivatives and initiators for three-dimensional extrusion bioprinting. Biomacromolecules, 2019. 21(2): p. 454-463.
74. Fairbanks, B.D., et al., Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials, 2009. 30(35): p. 6702-6707.
75. Benton, J.A., B.D. Fairbanks, and K.S. Anseth, Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials, 2009. 30(34): p. 6593-6603.
76. Williams, C.G., et al., Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 2005. 26(11): p. 1211-1218.
77. Nichol, J.W., et al., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010. 31(21): p. 5536-5544.
78. Sun, M., et al., Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers, 2018. 10(11): p. 1290.
79. Lee, Y., et al., Photo‐crosslinkable hydrogel‐based 3D microfluidic culture device. Electrophoresis, 2015. 36(7-8): p. 994-1001.
80. Grogan, S.P., et al., Digital micromirror device projection printing system for meniscus tissue engineering. Acta biomaterialia, 2013. 9(7): p. 7218-7226.
81. Qi, H., et al., Patterned differentiation of individual embryoid bodies in spatially organized 3D hybrid microgels. Advanced materials, 2010. 22(46): p. 5276-5281.
82. Kolesky, D.B., et al., 3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs. Advanced materials, 2014. 26(19): p. 3124-3130.
83. Li, X., et al., Influence of microporous gelatin hydrogels on chondrocyte functions. Journal of Materials Chemistry B, 2017. 5(29): p. 5753-5762.
84. Ahadian, S., et al., Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta biomaterialia, 2016. 31: p. 134-143.
85. Peak, C.W., et al., Microscale technologies for engineering complex tissue structures, in Microscale Technologies for Cell Engineering. 2016, Springer. p. 3-25.
86. Benton, J.A., et al., Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Engineering Part A, 2009. 15(11): p. 3221-3230.
87. Dong, Z., et al., Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC advances, 2019. 9(31): p. 17737-17744.
88. Yue, K., et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015. 73: p. 254-271.
89. Kroger, S.M., et al., Design of Hydrolytically Degradable Polyethylene Glycol Crosslinkers for Facile Control of Hydrogel Degradation. Macromolecular Bioscience, 2020. 20(10): p. 2000085.
90. Myrgorodska, I., et al., A Novel Acid‐Degradable PEG Crosslinker for the Fabrication of pH‐Responsive Soft Materials. Macromolecular Rapid Communications, 2021: p. 2100102.
91. Hu, J., et al., A thermo-degradable hydrogel with light-tunable degradation and drug release. Biomaterials, 2017. 112: p. 133-140.
92. Timko, B.P., et al., Near-infrared–actuated devices for remotely controlled drug delivery. Proceedings of the National Academy of Sciences, 2014. 111(4): p. 1349-1354.
93. Huang, X., et al., Design and construction of higher-order structure and function in proteinosome-based protocells. Journal of the American Chemical Society, 2014. 136(25): p. 9225-9234.
94. Ha, W., et al., Tunable temperature-responsive supramolecular hydrogels formed by prodrugs as a codelivery system. ACS applied materials & interfaces, 2014. 6(13): p. 10623-10630.
95. Villiou, M., J.I. Paez, and A. Del Campo, Photodegradable Hydrogels for Cell Encapsulation and Tissue Adhesion. ACS Applied Materials & Interfaces, 2020. 12(34): p. 37862-37872.
96. Norris, S.C., et al., Photodegradable Polyacrylamide Gels for Dynamic Control of Cell Functions. ACS Applied Materials & Interfaces, 2021. 13(5): p. 5929-5944.
97. You, J., et al., Bioactive photodegradable hydrogel for cultivation and retrieval of embryonic stem cells. Advanced Functional Materials, 2015. 25(29): p. 4650-4656.
98. Kloxin, A.M., et al., Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science, 2009. 324(5923): p. 59-63.
99. Seliktar, D., Designing cell-compatible hydrogels for biomedical applications. Science, 2012. 336(6085): p. 1124-1128.
100. Ahearne, M., Introduction to cell–hydrogel mechanosensing. Interface focus, 2014. 4(2): p. 20130038.
101. Caliari, S.R. and J.A. Burdick, A practical guide to hydrogels for cell culture. Nature methods, 2016. 13(5): p. 405-414.
102. Hahn, M.S., J.S. Miller, and J.L. West, Three‐dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Advanced Materials, 2006. 18(20): p. 2679-2684.
103. Fan, C. and D.-A. Wang, Macroporous hydrogel scaffolds for three-dimensional cell culture and tissue engineering. Tissue Engineering Part B: Reviews, 2017. 23(5): p. 451-461.
104. Fan, C. and D.A. Wang, Effects of permeability and living space on cell fate and neo‐tissue development in hydrogel‐based scaffolds: a study with cartilaginous model. Macromolecular bioscience, 2015. 15(4): p. 535-545.
105. Han, L.-H., et al., Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation. Biomaterials, 2013. 34(17): p. 4251-4258.
106. He, P., J. Fu, and D.-A. Wang, Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform. Acta biomaterialia, 2016. 35: p. 87-97.
107. Lau, T.T., L.W. Ho, and D.-A. Wang, Hepatogenesis of murine induced pluripotent stem cells in 3D micro-cavitary hydrogel system for liver regeneration. Biomaterials, 2013. 34(28): p. 6659-6669.
108. Marklein, R.A. and J.A. Burdick, Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter, 2010. 6(1): p. 136-143.
109. Huebsch, N., et al., Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature materials, 2010. 9(6): p. 518-526.
110. Khetan, S., et al., Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature materials, 2013. 12(5): p. 458-465.
111. Hsu, Y.-J., et al., A strategy to engineer vascularized tissue constructs by optimizing and maintaining the geometry. Acta biomaterialia, 2021.
112. Truong, V., I. Blakey, and A.K. Whittaker, Hydrophilic and amphiphilic polyethylene glycol-based hydrogels with tunable degradability prepared by “click” chemistry. Biomacromolecules, 2012. 13(12): p. 4012-4021.
113. Xu, J., E. Feng, and J. Song, Bioorthogonally cross-linked hydrogel network with precisely controlled disintegration time over a broad range. Journal of the American Chemical Society, 2014. 136(11): p. 4105-4108.
114. Ki, C.S., H. Shih, and C.-C. Lin, Facile preparation of photodegradable hydrogels by photopolymerization. Polymer, 2013. 54(8): p. 2115-2122.
115. Mahmoud, K.A., et al., Rearrangement of the active ester intermediate during HOBt/EDC amide coupling. European journal of inorganic chemistry, 2005. 2005(1): p. 173-180.
116. Subirós‐Funosas, R., et al., Oxyma: An Efficient Additive for Peptide Synthesis to Replace the Benzotriazole‐Based HOBt and HOAt with a Lower Risk of Explosion [1]. Chemistry–A European Journal, 2009. 15(37): p. 9394-9403.
117. König, W. and R. Geiger, Eine neue methode zur synthese von peptiden: aktivierung der carboxylgruppe mit dicyclohexylcarbodiimid unter zusatz von 1‐hydroxy‐benzotriazolen. Chemische Berichte, 1970. 103(3): p. 788-798.
118. Claaßen, C., et al., Quantification of substitution of gelatin methacryloyl: best practice and current pitfalls. Biomacromolecules, 2018. 19(1): p. 42-52.
119. Allgaier, J., et al., Synthesis and rheological behavior of poly (1, 2-butylene oxide) based supramolecular architectures. RSC advances, 2016. 6(8): p. 6093-6106.
120. Stubbe, B., et al., A straightforward method for quantification of vinyl functionalized water soluble alginates via 13C-NMR spectroscopy. International journal of biological macromolecules, 2019. 134: p. 722-729.
121. Zatorski, J.M., et al., Quantification of fractional and absolute functionalization of gelatin hydrogels by optimized ninhydrin assay and 1 H NMR. Analytical and Bioanalytical Chemistry, 2020. 412(24): p. 6211-6220.
122. Hoch, E., et al., Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation. Journal of Materials Science: Materials in Medicine, 2012. 23(11): p. 2607-2617.
123. Yue, K., et al., Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials, 2017. 139: p. 163-171.
124. Keller, S., et al., Azido‐functionalized gelatin via direct conversion of lysine amino groups by diazo transfer as a building block for biofunctional hydrogels. Journal of Biomedical Materials Research Part A, 2021. 109(1): p. 77-91.
125. Sabnis, A., et al., Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2009. 91(1): p. 52-59.
126. Bryant, S.J., C.R. Nuttelman, and K.S. Anseth, Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. Journal of Biomaterials Science, Polymer Edition, 2000. 11(5): p. 439-457.
127. Zhao, X., et al., Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017. 122: p. 34-47.
128. Masood, N., et al., Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. International journal of pharmaceutics, 2019. 559: p. 23-36.
129. Capanema, N.S., et al., Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International journal of biological macromolecules, 2018. 106: p. 1218-1234.
130. Nuttelman, C.R., M.C. Tripodi, and K.S. Anseth, Synthetic hydrogel niches that promote hMSC viability. Matrix biology, 2005. 24(3): p. 208-218.
131. Salinas, C.N., et al., Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly (ethylene glycol)–arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks. Tissue engineering, 2007. 13(5): p. 1025-1034.
132. Liu, S.Q., et al., Injectable biodegradable poly (ethylene glycol)/RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stem cells. Macromolecular rapid communications, 2010. 31(13): p. 1148-1154.
133. Xu, H., et al., Effects of Irgacure 2959 and lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomedical Materials, 2020. 15(5): p. 055021.
134. Duchi, S., et al., Protocols for culturing and imaging a human ex vivo osteochondral model for cartilage biomanufacturing applications. Materials, 2019. 12(4): p. 640.
135. Pereira, R.F. and P.J. Bártolo, 3D bioprinting of photocrosslinkable hydrogel constructs. Journal of Applied Polymer Science, 2015. 132(48).
136. Shih, H. and C.C. Lin, Visible‐light‐mediated thiol‐Ene hydrogelation using eosin‐Y as the only photoinitiator. Macromolecular rapid communications, 2013. 34(3): p. 269-273.
137. Han, W.T., et al., Improved cell viability for large-scale biofabrication with photo-crosslinkable hydrogel systems through a dual-photoinitiator approach. Biomaterials science, 2020. 8(1): p. 450-461.
138. 林騰焱, 圖案化明膠甲基丙烯水凝膠對血管生成和皮膚再生的影響. 清華大學材料科學工程學系學位論文, 2019: p. 1-114.