研究生: |
羅予祥 Lo, Yu-Hsiang |
---|---|
論文名稱: |
耗散粒子動力學模擬奈米棒狀顆粒與雙嵌段共聚物共混於剪切流場下之相態變化 Shear-Induced Microphase Transition of Nanorod/Diblock Copolymer Blends via Dissipative Particle Dynamics Simulations |
指導教授: |
張榮語
Chang, Rong-Yu |
口試委員: |
吳建興
黃招財 曾煥錩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 耗散粒子動力學 、Janus奈米顆粒 、剪切流場 、雙嵌段共聚物 、高分子共混 |
外文關鍵詞: | Janus Nano-particle, Shear Field |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文透過耗散粒子動力學方法,模擬奈米棒狀顆粒與雙嵌段共聚物共混系統的相態變化,分析該系統在剪切流場下的微相分離結構以及排向性轉換的機制。同時藉由改變奈米棒狀顆粒對雙嵌段共聚物的親和性,包括雙親性Janus棒狀顆粒、親A嵌段性之棒狀顆粒和無親性之棒狀顆粒,探討並比較不同親和性奈米顆粒對系統結構排向性轉換和流變性質如黏度的影響。
研究結果發現,共混系統受剪切流場誘導,依流場強度分別具有橫斷、平行和垂直三種排向性的層板狀微相結構,不同親和性奈米顆粒會使共混系統延遲或提早發生剪切稀化(shear thinning)現象。此外,由於雙親性Janus棒狀顆粒傾向垂直處於微相分離介面中,能夠同時吸引兩端嵌段分子,所統計出的剪切黏度大於其他親和性奈米顆粒。因此,本論文模擬透過添加奈米顆粒以及剪切流場的誘導,提升材料的加工或機械性質,有助於未來高分子奈米複合材料的應用與研究。
The shear-induced microphase separation and orientational transitions of diblock copolymer/nanorod blends subjected to steady shear flow, are modeled and simulated via Dissipative Particle Dynamics method. We have tailored the affinity between nanorods and diblock copolymer, and investigated three types of nanocomposites which are containing amphiphilic Janus nanorods, A-affinity nanorods and non-affinity nanorods, respectively. The aim of our present study is to understand that how these different affinity of nanorods affect the orientational transitions of nanocomposites and rheological properties.
The results show that the shear field can be used to induce lamellar phase orientational transitions, such as transverse alignment at zero shear, parallel alignment at low shear rate and perpendicular alignment at high shear rate. The presence of nanorods delays or advances the shear-thinning phenomenon. Especially, since amphiphilic Janus nanorods tend to anchor at the interface of microphase separation, it can attract both blocks of diblock copolymer, therefore increase the viscosity of nanocomposites. Our simulations provide a possible approach to enhance the mechanical and processing properties by applying shear field and adding nanorods, that might help us study further the application of nanocomposites in the future.
[1] Glotzer and S. C., "Some Assembly Required," Science, 306, 419-420, 2004.
[2] P. J. Hoogerbrugge and J. M. V. A. Koelman, "Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics," Europhysics Letters, 19, 155-160, 1992.
[3] P. Espanol and P. Warren, "Statistical Mechanics of Dissipative Particle Dynamics," Europhysics Letters, 30, 191-196, 1995.
[4] Robert D. Groot and Patrick B. Warren, "Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation," J. Chem. Phys., 107, 114423, 1997.
[5] 柯揚船、皮特‧斯壯主編, "聚合物-無機奈米複合材料Polymer-nano Inorganic Composite Material",五南圖書出版股份有限公司,2004。
[6] 張豐志編著, "應用高分子手冊Hand Book of Applied Polymers",五南圖書出版股份有限公司,2003。
[7] Ying Wang and Norman Herron, "X-Ray Photoconductive Nanocomposites," Science, 273, 632, 1996.
[8] Gavin A. Buxton and Anna C. Balazs, "Lattice Spring Model of Filled Polymers and Nanocomposites," J. Chem. Phys., 117, 16, 2002.
[9] Gongwen Peng, Feng Qiu, Valeriy V. Ginzburg, David Jasnow, and Anna C. Balazs, "Forming Supramolecular Networks from Nanoscale Rods in Binary, Phase-Separating Mixtures," Science, 288, 1802, 2000.
[10] Wendy U. Huynh, Janke J. Dittmer, and A. Paul Alivisatos, "Hybrid Nanorod-Polymer Solar Cells," Science, 295, 2425, 2002.
[11] Lori E. Greene, Matt Law, Benjamin D. Yuhas, and Peidong Yang, "ZnO−TiO2 Core−Shell Nanorod/P3HT Solar Cells," J. Phys. Chem. C, 111, 18451-18456, 2007.
[12] Robert D. Groot and Timothy J. Madden, "Dynamic Simulation of Diblock Copolymer Microphase Separation," J. Chem. Phys., 108, 20, 1998.
[13] Martinez-Veracoechea F. J., Escobedo F. A., "Simulation of the Gyroid Phase in Off-lattice Models of Pure Diblock Copolymer Melts," J. Chem. Phys., 125, 104907, 2006.
[14] Wei Liu, Hu-Jun Qian, Zhong-Yuan Lu, Ze-Sheng Li, and Chia-Chung Sun, "Dissipative Particle Dynamics Study on the Morphology Changes of Diblock Copolymer Lamellar Microdomains due to Steady Shear," Phys. Rev. E, 74, 021802, 2006.
[15] Martin Lisal and John K. Brennan, "Alignment of Lamellar Diblock Copolymer Phases under Shear: Insight from Dissipative Particle Dynamics Simulations," Langmuir, 23, 4809-4818, 2007.
[16] Yao Lin, Alexander Boker, Jinbo He, Kevin Sill, Hongqi Xiang, Clarissa Abetz, Xuefa Li, Jin Wang, Todd Emrick, Su Long, Qian Wang, Anna Balaz, and Thomas P. Russell, "Self-directed Self-assembly of Nanoparticle/Copolymer Mixtures," Nature, 434, 55, 2005.
[17] Linli He, Linxi Zhang, Agen Xia, and Haojun Liang, "Effect of Nanorods on the Mesophase Structure of Diblock Copolymers," J. Chem. Phys., 130, 144907, 2009.
[18] Linli He, Linxi Zhang, and Haojun Liang, "Mono- or Bidisperse Nanorods Mixtures in Diblock Copolymers," Polymer, 51, 3303-3314, 2010.
[19] Li-Tang Yan, Nicole Popp, Sujit-Kumar Ghosh, and Alexander Boker, "Self-Assembly of Janus Nanoparticles in Diblock Copolymer, " ACS NANO, 4, 913-920, 2010.
[20] Linli He, Zhangquan Pan, Linxi Zhang, and Haojun Liang, "Microphase Transitions of Block Copolymer/Nanorod Composites Under Shear Flow," Soft Matter, 7, 1147-1160, 2011.
[21] Zhengquan Pan, Linli He, Linxi Zhang, and Haojun Liang, "The Dynamic Behaviors of Diblock Copolymer/Nanorod Mixtures Under Equilibrium and Nonequilibrium Conditions," Polymer, 52, 2711-2721, 2011.
[22] Wiki Pedia, " Coutte Flow," http://en.wikipedia.org/wiki/Couette_flow
[23] Hoover W. G., Evans D. J., Hickman R. B., Ladd A. J.C., Ashurst W. T., and Moran B., "Lennard-Jones Triple-Point Bulk and Shear Viscosities. Green-Kubo Theory, Hamiltonian Mechanics, and Nonequilibrium Molecular Dynamics," Phys. Rev. A, 22, 1690-1697, 1980.
[24] Evans D. J. and Morriss G. P., "Nonlinear-Response Theory for Steady Planar Couette Flow, " Phys. Rev. A, 30, 1528-1530, 1984.
[25] Daivis P. J. and Todd B. J., "A Simple, Direct Derivation and Proof of the Validity of the SLLOD Equations of Motion for Generalized Homogeneous Flows," J. Chem. Phys., 124, 194103, 2006.
[26] Lees W. and Edwards S. F., "The Computer Study of Transport Processes Under Extreme Conditions," J. Phys. C, 5, 1921-1929, 1972.
[27] A. Chatterjee, "Modification to Lees-Edwards Periodic Boundary Condition for Dissipative Particle Dynamics Simulation with High Dissipation Rate," Mol. Simulat., 33, 1233, 2007.
[28] Zunmin Zhang and Hongxia Guo, "The Phase Behavior, Structure, and Dynamics of Rodlike Mesogens with Various Flexibility Using Dissipative Particle Dynamics Simulation," J. Chem. Phys., 133, 144911, 2010.
[29] A. AlSunaidi, W. K. Den Otter, and J. H. R. Clarke, "Liquid-Crystalline Ordering in Rod-Coil Diblock," Phil. Trans. R. Soc. Lond. A, 362, 1773-1781, 2004.
[30] Yehudi K. Levine, Alexandre E. Gomes, Assis Farinha Martins, and Antonino Polimeno, "A Dissipative Particle Dynamics Description of Liquid-Crystalline phases. I. Methodology and Applications," J. Chem. Phys., 122, 144902, 2005.
[31] Shih-Hao Chou, Heng-Kwong Tsao, and Yu-Jane Sheng, "Structural Aggregates of Rod-Coil Copolymer Solutions, " J. Chem. Phys., 134, 034904, 2011.
[32] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, "Numerical Integration of the Cartesian Equation of Motion of a System with a Constraints: Molecular Dynamics of n-Alkanes," J. Comput. Phys., 23, 327, 1977.
[33] Hans C. Anderson, "Rattle: A "Velocity" Version of the Shake Algorithm for Molecular Dynamics Calculation," J. Comput. Phys., 52, 24-34, 1983.
[34] D. J. Evans and S. Murad, "Singularity free algorithm for molecular dynamics simulation of rigid polyatomics," Mol. Phys., 34, 327-331, 1977.
[35] A. Rahman and F. H. Stillinger, "Molecular Dynamics Study of Liquid Water," J. Chem. Phys., 55, 3336, 1971.
[36] L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules," Phys. Rev., 159, 98-103, 1967.
[37] William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R. Wilson, "A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters," J. Chem. Phys., 76, 637, 1982.
[38] M. P. Allen and D. J. Tildesley, "Computer Simulation of Liquids," Oxford University Press, 1989.
[39] Richard J. Sadus, "Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation," ELSEVIER, 1999.
[40] D. C. Paraport, "The Art of Molecular Dynamics Simulation," Cambridge University Press, 1995.
[41] Wang Yong-lei, Li Zhan-wei, Liu Hong, and Lu Zhong-yuan, "Progerss and Applications of Dissipative Particle Dynamics Simulation Method in Soft Matters, " Progress in Physics, 31, 2011.
[42] Tongyang Zhao and Xiaogong Wang, "Phase Behavior of Lyotropic Rigid-Chain Polymer Liquid Crystal Studied by Dissipative Particle Dynamics," J. Chem. Phys., 135, 244901, 2011.
[43] Antonino Polimeno, Alexandre Gomes, and Assis Farinha Martins, "Dissipative Particle Dynamics Approach to Nematic Polymers," Computer Simulations of Liquid Crystals and Polymers, 135-147, 2005.
[44] J. D. Moore, S. T. Cui, H. D. Cochran, and P. T. Cummings, "Transient Rheology of a Polyethylene Melt Under Shear," Phys. Rev. E, 60, 6956-6959, 1999.
[45] K. A. Koopi, M. Tirrell, F. S. Bates, K. Almdal, and R. H. Colby, "Lamellae Orientation in Dynamically Sheared Diblock Copolymer Melts," J. Phys. II, 2, 1941-1967, 1992.
[46] Hongxia Guo, "Shear-Induced Parallel-to-Perpendicular Orientation Transition in the Amphiphilic Lamellar Phase: A Nonequilibrium Molecular-Dynamics Simulation Study," J. Chem. Phys., 124, 054902, 2006.
[47] 吳穎婷,"耗散粒子動力學模擬具有鋼性鏈段之三嵌段共聚物與線性高分子共混系統之相態衍變",國立清華大學化學工程研究所碩士學位論文,2010。
[48] 陳建彣,"以耗散粒子動力學模擬探討水分子的靜電感應作用對相態變化之影響",國立清華大學化學工程研究所碩士學位論文,2010。
[49] 李浩旻,"以耗散粒子動力學模擬高分子在剪切流動下對形態變化之影響",國立清華大學化學工程研究所碩士學位論文,2010。
[50] Chang Dae Han, Deog Man Baek, and Jin Kon Kim, "Effect of Microdomain Structure on the Order-Disorder Transition Temperature of Polystyrene-block-Polyisoprene-block-Polystyrene Copolymers," Macromolecules, 23, 561-570, 1990.