研究生: |
蘇家玉 Su, Chia-Yu |
---|---|
論文名稱: |
利用介電質屏蔽放電電漿對磷酸鋰鐵錳正極材料表面碳層進行氮摻雜以提高其電化學性能 Improving the electrochemical performance of LiMn0.8Fe0.2PO4 cathode with nitrogen doped carbon via dielectric barrier discharge plasma |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
吳志明
蕭立殷 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 氮摻雜碳 、介電質屏蔽放電電漿 、磷酸鋰錳鐵 |
外文關鍵詞: | Nitrogen-Doped carbon, Dielectric barrier discharge plasma, LiMn0.8Fe0.2PO4 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著電動車與電子產品快速崛起,除了追求高能量密度與長圈數循環電池,也致力於提升電池安全性並減少成本開銷,達到商業化應用。橄欖石結構具備結構穩定性高、成本低與熱安全性等優點,但導電性差與導離子率低成為其致命缺點。
本研究利用成本相對低廉的三步固相法製備磷酸鋰鐵錳粉末,藉由三步驟球磨與燒結,改善固相法碳層不均勻與顆粒大等問題,使蔗糖均勻披覆於粉體表面,形成導電碳層以提升導電性。再藉由步需抽真空的常壓介電質放電電漿,通入氮氣有效激發出氮電漿,處理磷酸鋰鐵錳表面進行改質,與表面導電碳層形成碳氮鍵結。結果顯示碳氮鍵結的碳層,除了能改善磷酸鋰錳鐵導電性差之外,具有缺陷結構的碳氮鍵結,更能提供鋰離子更多擴散路徑,提升導離子率,使磷酸鋰錳鐵電容量提升。以往利用化學藥品經由繁複的合成手法得到碳氮結構碳層,如今利用常壓介電質電壓,僅需數分鐘即能達到,除了能大幅節省成本外,對環境友善,更可大面積處理,有望於大規模工業化量產。
Recently, with the rapid rise of electric vehicles and electronic products, in addition to the conventional pursuit of high energy density and long cycle life battery, significant effort is made to improve battery safety and reduce cost to achieve commercial applications. Olivine type structure has the advantages of high structural stability, low cost and thermal safety. Nonetheless, the most prominent issues are the poor conductivity and low lithium ion conductivity.
In this study, the LiMn0.8Fe0.2PO4/nitrogen doped carbon compounds were fabricated through a facile approach with atmospheric dielectric barrier discharge plasma. First, LiMn0.8Fe0.2PO4 was synthesized by the low-cost solid method with carbon from sucrose to enhance electrical conductivity. Second, atmospheric dielectric barrier discharge plasma was applied to dope nitrogen into the carbon, enhancing lithium ion migration into the LiMn0.8Fe0.2PO¬4. The surface chemistry was investigated and the degree of defect on the carbon surface was quantified. The nitrogen-doped carbon/ LiMn0.8Fe0.2PO4 revealed the initial specific capacity around 124 mAhg-1 at 0.1C, showing a significant improvement of electrochemical performance as compared with the pristine batteries. Contrary to conventional methods of using chemicals through tedious procedures, dielectric barrier discharge plasma merely requires several minutes to produce nitrogen doped carbon, promoting the electrical conductivity and lithium diffusion coefficient of LiMn0.8Fe0.2PO¬4. In addition to reducing costs, it is environmentally friendly and can be processed on a large area. It is expected that dielectric barrier discharge plasma could be widely used in the modification of the lithium ion battery industry.
1. Abada, S., et al., Safety focused modeling of lithium-ion batteries: A review. Journal of Power Sources, 2016. 306: p. 178-192.
2. Liang, Y., et al., A review of rechargeable batteries for portable electronic devices. InfoMat, 2019. 1(1): p. 6-32.
3. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
4. Drezen, T., et al., Effect of particle size on LiMnPO4 cathodes. Journal of Power Sources, 2007. 174: p. 949-953.
5. Li, L.-e., et al., Effect of different carbon sources on the electrochemical properties of rod-like LiMnPO4–C nanocomposites. RSC Advances, 2013. 3(19): p. 6847-6852.
6. Xu, H., et al., Effects of Fe2+ ion doping on LiMnPO4 nanomaterial for lithium ion batteries. RSC Advances, 2016. 6(32): p. 27164-27169.
7. Nie, Z., et al., First principles study of Jahn-Teller effects in LixMnPO4. Solid State Communications - SOLID STATE COMMUN, 2010. 150: p. 40-44.
8. Tao, S., et al., Performance enhancement of Lithium-ion battery with LiFePO4@C/RGO hybrid electrode. Electrochimica Acta, 2014. 144: p. 406-411.
9. Li, X., et al., A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications, 2007. 9(4): p. 663-666.
10. Guo, L., et al., Heterogeneous carbon/N-doped reduced graphene oxide wrapping LiMn0.8Fe0.2PO4 composite for higher performance of lithium ion batteries. Applied Surface Science, 2019. 476: p. 513-520.
11. Oh, J., et al., Melamine Foam-Derived N-Doped Carbon Framework and Graphene-Supported LiFePO4 Composite for High Performance Lithium-Ion Battery Cathode Material. ACS Sustainable Chemistry & Engineering, 2019. 7(1): p. 306-314.
12. Shi, J., et al., Titania and nitrogen-doped carbon co-modification: Their synergic effects on the electrochemical performance of LiFePO4. Journal of Alloys and Compounds, 2018. 750: p. 139-146.
13. Xiong, Q.Q., et al., Controllable synthesis of N-C@LiFePO4 nanospheres as advanced cathode of lithium ion batteries. Journal of Alloys and Compounds, 2018. 743: p. 377-382.
14. Zhang, C., et al., Facile synthesis of nitrogen-doped carbon derived from polydopamine-coated Li3V2(PO4)3 as cathode material for lithium-ion batteries. RSC Advances, 2014. 4(73): p. 38791-38796.
15. Chuang, S.-I., et al., Modification of TiO2 powder via atmospheric dielectric barrier discharge treatment for high performance lithium-ion battery anodes. Thin Solid Films, 2015. 596: p. 250-255.
16. Wang, Y., et al., Rational design of a synthetic strategy, carburizing approach and pore-forming pattern to unlock the cycle reversibility and rate capability of micro-agglomerated LiMn0.8Fe0.2PO4 cathode materials. Journal of Materials Chemistry A, 2018. 6(22): p. 10395-10403.
17. Chen, R., et al., Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horizons, 2016. 1(6): p. 423-444.
18. Choi, N.-S., et al., ChemInform Abstract: Recent Advances in the Electrolytes for Interfacial Stability of High-Voltage Cathodes in Lithium-Ion Batteries. RSC Adv., 2014. 5.
19. Lu, L., et al., A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013. 226: p. 272-288.
20. Chakraborty, A., et al., Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2. Chemistry of Materials, 2020. 32(3): p. 915-952.
21. Padhi, A.K., Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 1997. 144(4): p. 1188.
22. Islam, M.S., et al., Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4Olivine-Type Battery Material. Chemistry of Materials, 2005. 17(20): p. 5085-5092.
23. Wang, J. and X. Sun, Olivine LiFePO4: the remaining challenges for future energy storage. Energy & Environmental Science, 2015. 8(4): p. 1110-1138.
24. Aravindan, V., et al., LiMnPO4 – A next generation cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013. 1(11): p. 3518-3539.
25. Hautier, G., et al., Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations. Chemistry of Materials, 2011. 23(15): p. 3495-3508.
26. Di Lecce, D. and J. Hassoun, Lithium Transport Properties in LiMn1−αFeαPO4 Olivine Cathodes. The Journal of Physical Chemistry C, 2015. 119(36): p. 20855-20863.
27. Nie, Z.X., et al., First principles study of Jahn–Teller effects in LixMnPO4. Solid State Communications, 2010. 150(1-2): p. 40-44.
28. Choi, D., et al., Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries. Energy & Environmental Science, 2011. 4(11): p. 4560-4566.
29. Martha, S.K., et al., LiMnPO[sub 4] as an Advanced Cathode Material for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 2009. 156(7): p. A541.
30. Oh, S.-M., et al., Enhanced electrochemical performance of carbon–LiMn1−xFexPO4 nanocomposite cathode for lithium-ion batteries. Journal of Power Sources, 2011. 196(16): p. 6924-6928.
31. Seo, D.-H., et al., Multicomponent Olivine Cathode for Lithium Rechargeable Batteries: A First-Principles Study. Chemistry of Materials, 2010. 22(2): p. 518-523.
32. Yi, T.-F., et al., Carbon-coated LiMn1-xFexPO4 (0≤x≤0.5) nanocomposites as high-performance cathode materials for Li-ion battery. Composites Part B: Engineering, 2019. 175: p. 107067.
33. Zhou, X., et al., The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating. Journal of Materials Chemistry A, 2015. 3(3): p. 996-1004.
34. Johnson, I.D., et al., Mapping Structure-Composition-Property Relationships in V- and Fe-Doped LiMnPO4 Cathodes for Lithium-Ion Batteries. ACS Combinatorial Science, 2016. 18(11): p. 665-672.
35. Xiong, D., et al., Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries. ACS applied materials & interfaces, 2017. 9.
36. Wang, Y., et al., A versatile nitrogen-doped carbon coating strategy to improve the electrochemical performance of LiFePO4 cathodes for lithium-ion batteries. Journal of Alloys and Compounds, 2019. 810: p. 151889.
37. Tu, X., Y. Zhou, and Y. Song, Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries. Applied Surface Science, 2017. 400: p. 329-338.
38. Oh, J., et al., Dual Layer Coating Strategy Utilizing N-doped Carbon and Reduced Graphene Oxide for High-Performance LiFePO4 Cathode Material. Electrochimica Acta, 2017. 231: p. 85-93.
39. Wang, P., et al., Improved Electrochemical Performance of LiFePO4@N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources. ACS Applied Materials & Interfaces, 2016. 8(40): p. 26908-26915.
40. Shin, W.H., et al., Nitrogen-Doped Multiwall Carbon Nanotubes for Lithium Storage with Extremely High Capacity. Nano Letters, 2012. 12(5): p. 2283-2288.
41. Jeong, H.M., et al., Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Letters, 2011. 11(6): p. 2472-2477.
42. Wang, Y., et al., N-Doping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018. 6(5): p. 2011-2017.
43. Cools, P., N. De Geyter, and R. Morent, PLA Enhanced via Plasma Technology: A Review. 2014. p. 79-110.
44. Schutze, A., et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science, 1998. 26(6): p. 1685-1694.
45. Merche, D., N. Vandencasteele, and F. Reniers, Atmospheric plasmas for thin film deposition: A critical review. Thin Solid Films, 2012. 520(13): p. 4219-4236.
46. Yin, Y., et al., Surface properties of silicon oxide films deposited using low-pressure dielectric barrier discharge. Applied Surface Science, 2009. 255(17): p. 7708-7712.
47. Wei, Z. and C.-j. Liu, Synthesis of monodisperse gold nanoparticles in ionic liquid by applying room temperature plasma. Materials Letters, 2011. 65(2): p. 353-355.
48. Jeong, H.Y., et al., Surface cleaning effect of NCM powder and improvement of lithium ion battery on the thermal stability and life cycle employing dielectric barrier discharge technique. Current Applied Physics, 2018. 18(9): p. 961-967.
49. Chen, M., et al., Synergetic effect of liquid/plasma on wet wheat straw porous carbon: Pore structure, heteroatom doping and CO2 adsorption. Materials Letters, 2020. 262: p. 127185.
50. Thackeray, M.M., C. Wolverton, and E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science, 2012. 5(7): p. 7854-7863.
51. Wang, A., et al., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials, 2018. 4(1): p. 15.
52. Wu, B., et al., LiFePO4 cathode material. 2011: p. 199-216.
53. Mauger, A. and C.M.J.B. Julien, Olivine positive electrodes for Li-ion batteries: Status and perspectives. 2018. 4(3): p. 39.
54. Wi, S., et al., Synchrotron-based x-ray absorption spectroscopy for the electronic structure of LixMn0.8Fe0.2PO4 mesocrystal in Li+ batteries. Nano Energy, 2017. 31: p. 495-503.
55. Yang, H., et al., Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient. Carbon, 2020. 158: p. 102-109.
56. Raj, H. and A. Sil, Effect of carbon coating on electrochemical performance of LiFePO4 cathode material for Li-ion battery. Ionics, 2018.
57. Subedi, D.P., U.M. Joshi, and C.S. Wong, Dielectric Barrier Discharge (DBD) Plasmas and Their Applications, in Plasma Science and Technology for Emerging Economies: An AAAPT Experience, R.S. Rawat, Editor. 2017, Springer Singapore: Singapore. p. 693-737.
58. Béquin, P., V. Joly, and P. Herzog, Corona Discharge Velocimeter. Acta Acustica united with Acustica, 2018. 104: p. 477-485.
59. Tanaka, H., et al., State of the art in medical applications using non-thermal atmospheric pressure plasma. Reviews of Modern Plasma Physics, 2017. 1(1): p. 3.
60. Trelles, J.P., et al., Arc Plasma Torch Modeling. Journal of Thermal Spray Technology, 2009. 18(5): p. 728.
61. Ali, A., et al., Influence of plasma-activated compounds on melanogenesis and tyrosinase activity. Scientific Reports, 2016. 6: p. 21779.
62. Wang, W., et al., Modeling Plasma-based CO2 and CH4 Conversion in Mixtures with N2, O2 and H2O: the Bigger Plasma Chemistry Picture. The Journal of Physical Chemistry C, 2018. 122.
63. Clay, K.J., et al., Characterization of a‐C:H:N deposition from CH4/N2 rf plasmas using optical emission spectroscopy. Journal of Applied Physics, 1996. 79(9): p. 7227-7233.
64. Wang, M., et al., High‐Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen‐Doped Graphene Foams. Advanced Materials, 2015. 27.
65. Sing, K.S.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985. 57(4): p. 603-619.
66. Gao, F. and Z. Tang, Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochimica Acta, 2008. 53(15): p. 5071-5075.
67. Li, S., et al., Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chemical Communications, 2016. 52(73): p. 10988-10991.