簡易檢索 / 詳目顯示

研究生: 嚴清宇
Ching-Yu Yen
論文名稱: 應用於生物系統之免表面PNP模型
A Surface Free Poisson-Nernst-Planck Model for Biological Systems
指導教授: 劉晉良
Jinn-Liang Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 31
中文關鍵詞: 凡得瓦爾玻茲曼分佈蘭納-瓊斯
外文關鍵詞: Boltzmann distribution, van der Waals, Lennard-Jones
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在數值方法解泊松-斯特-普朗克模型發展中,凡得瓦爾(vdW)位能的介電常數裡玻茲曼分佈是一個連續函數。凡得瓦爾的位能表示為在溶劑中的離子和原子在生物大分子(蛋白質)所有成對的蘭納-瓊斯之間的相互作用的總和,並在周圍的分子或原子內部產生位能牆。在本篇中我們發現直接使用差分法處理位能牆的近似解較為不理想。


    Numerical methods are developed for solving the Poisson-Nernst-Planck model in which the electric permittivity is a continuous function of the Boltzmann distribution in terms of the van der Waals (vdW) potential. The vdW potential is expressed as a summation of all pairwise the Lennard-Jones interactions between ions in solvent and the atoms in a biomolecule (protein). The vdW potential has internal layer (potential wall) around the molecule. It is found that direct finite difference approximation of the vdW potential is unable to capture the potential wall but gives good approximation away from the wall. On the other hand, a splitting function method can yield a sharp wall but does not give good approximation away from the wall.

    摘要(中文)--------------------------------------------------i 摘要(英文)-------------------------------------------------ii Contents--------------------------------------------------iii 1 Introduction---------------------------------------------1 2 Poisson-Nernst-Planck model and mathematical algorithm---2 2.1 Poisson-Nernst-Planck model----------------------------2 2.2 Molecular surface free model---------------------------5 2.3 Mathematical algorithm of PNP--------------------------7 2.3.1 Finite difference method (FDM) for Poisson equation--7 2.3.2 Matched interface and boundary method (MIB)----------8 2.3.3 Finite difference method (FDM) for NP---------------11 2.3.4 The decomposition of electrostatic potential-------12 2.4 Gummel scheme-----------------------------------------13 3 Dimensionless formulation-------------------------------14 3.1 Unit conversion and physical constants----------------14 3.2 Dimensionless quantities------------------------------15 4 Numerical method and results----------------------------18 5 Conclusions---------------------------------------------25 6 References----------------------------------------------26

    [1] A. Aksimentiev, M. Sotomayor, and D.Wells, Membrane proteins tutorial, Theoretical
    and Computational Biophysics Group, University of Illinois at Urbana-Champaign
    (2009).
    [2] V. Barcilon, Ion flow through narrow membran channels: part I. SIAM J. APPL.
    MATH, 52(5):1391— 1404, 1992.
    [3] B. Lu and J. A. McCammon, Molecular surface-free continuum model for electrodiffusion
    processes, Chem. Phys. Lett. 451 (2008) 282—286.
    [4] Y. W. Jung, B. Z. Lu, and M. Mascagni, A computational study of ion conductance
    in the kcsa k+ channel using a Nernst-Planck model with explicit resident ions. J.
    Chem. Phys., 131(215101), 2009.
    [5] Q. Zheng, D. Chen, and G.-W. Wei, Second-order Poisson Nernst-Planck solver for
    ion channel transport, J. Comp. Phys. 230 (2011) 5239-5262.
    [6] W. Geng, S. Yu, and G. Wei, Treatment of charge singularities in implicit solvent
    models, J. Chem. Phys. 127 (2007) 114106.
    [7] A. Simakov, and G. Kurnikova, Soft wall ion channel in continuum representation with
    application to modeling ion currents in 3-hemolysin, J Phys Chem B. 2010 November
    25; 114(46): 15180—15190. doi:10.1021/jp1046062.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE