研究生: |
嚴清宇 Ching-Yu Yen |
---|---|
論文名稱: |
應用於生物系統之免表面PNP模型 A Surface Free Poisson-Nernst-Planck Model for Biological Systems |
指導教授: |
劉晉良
Jinn-Liang Liu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 31 |
中文關鍵詞: | 凡得瓦爾 、玻茲曼分佈 、蘭納-瓊斯 |
外文關鍵詞: | Boltzmann distribution, van der Waals, Lennard-Jones |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在數值方法解泊松-斯特-普朗克模型發展中,凡得瓦爾(vdW)位能的介電常數裡玻茲曼分佈是一個連續函數。凡得瓦爾的位能表示為在溶劑中的離子和原子在生物大分子(蛋白質)所有成對的蘭納-瓊斯之間的相互作用的總和,並在周圍的分子或原子內部產生位能牆。在本篇中我們發現直接使用差分法處理位能牆的近似解較為不理想。
Numerical methods are developed for solving the Poisson-Nernst-Planck model in which the electric permittivity is a continuous function of the Boltzmann distribution in terms of the van der Waals (vdW) potential. The vdW potential is expressed as a summation of all pairwise the Lennard-Jones interactions between ions in solvent and the atoms in a biomolecule (protein). The vdW potential has internal layer (potential wall) around the molecule. It is found that direct finite difference approximation of the vdW potential is unable to capture the potential wall but gives good approximation away from the wall. On the other hand, a splitting function method can yield a sharp wall but does not give good approximation away from the wall.
[1] A. Aksimentiev, M. Sotomayor, and D.Wells, Membrane proteins tutorial, Theoretical
and Computational Biophysics Group, University of Illinois at Urbana-Champaign
(2009).
[2] V. Barcilon, Ion flow through narrow membran channels: part I. SIAM J. APPL.
MATH, 52(5):1391— 1404, 1992.
[3] B. Lu and J. A. McCammon, Molecular surface-free continuum model for electrodiffusion
processes, Chem. Phys. Lett. 451 (2008) 282—286.
[4] Y. W. Jung, B. Z. Lu, and M. Mascagni, A computational study of ion conductance
in the kcsa k+ channel using a Nernst-Planck model with explicit resident ions. J.
Chem. Phys., 131(215101), 2009.
[5] Q. Zheng, D. Chen, and G.-W. Wei, Second-order Poisson Nernst-Planck solver for
ion channel transport, J. Comp. Phys. 230 (2011) 5239-5262.
[6] W. Geng, S. Yu, and G. Wei, Treatment of charge singularities in implicit solvent
models, J. Chem. Phys. 127 (2007) 114106.
[7] A. Simakov, and G. Kurnikova, Soft wall ion channel in continuum representation with
application to modeling ion currents in 3-hemolysin, J Phys Chem B. 2010 November
25; 114(46): 15180—15190. doi:10.1021/jp1046062.