簡易檢索 / 詳目顯示

研究生: 王之妤
Wang, Jhih-Yu
論文名稱: 三維奈米碳管與高分子整合製程之開發及其於撓性電容式感測元件之應用
Development of 3D CNTs-Polymer Composite for Flexible Capacitive Sensors
指導教授: 方維倫
Fang, Weileun
口試委員: 鄭裕庭
徐文光
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 奈米碳管高分子複合材料可撓性電容感測器
外文關鍵詞: carbon nanotube, polymer, composite, flexible, capacitive sensor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發三維奈米碳管與高分子整合製程,及利用此製程及設計製作撓性電容式感測元件,分別為應變感測,彎曲曲率感測,觸覺感測及近接感測。此研究利用奈米碳管結合高分子的複合材料當作電容式的指叉電極,因奈米碳管成長高度約為50 ~100□m,故會有較大的感測面積及感測電容值。另外透過在矽基材上成長不同的三維奈米碳管的圖形分佈,再藉由簡單的高分子翻膜技術,便可以製作出三維奈米碳管結合高分子材料的感測電極和電路,並以高分子材料當做電容感測器的基材增加其可撓性。相較於金屬電極沉積在高分子基材上,利用奈米碳管結合高分子的複合材料,可以避免感測電極和高分子基材黏著性不佳的問題。本研究成功利用本文開發之製程平台,實現多種撓性電容式感測元件,並且對於應變感測,彎曲曲率感測,觸覺感測及近接感測進行性能的分析及探討,最後整合觸覺感測和近接感測。未來可朝向陣列式的發展,並將感測電路和控制系統做整合,應用於機械手臂及穿戴式智慧裝置系統。


    This study reports a novel approach to implement 3D carbon nanotubes (CNTs) interdigitated finger electrodes on flexible polymer, and the detection of strain, bending curvature, tactile force, and proximity distance are demonstrated. The merits of presented design are as follows, (1) employing the aligned CNTs (~70□m in height) as interdigitated finger electrodes to increase sensing area and initial capacitance; (2) 3D interdigitated finger electrodes and anchor structures are naturally formed by the use of anisotropically-etched silicon mold; (3) the 3D CNTs electrodes and electrical routings are batch-fabricated on the silicon substrate, and are transferred to the flexible polymer substrate by polymer molding; (4) the CNTs-polymer composites as sensing electrodes and electrical routing are more robust and can avoid the problem of delamination; (5) the integration of 3D polymer structure can be further adopted as flexible sensors with multi-functional sensing. Preliminary fabrication results demonstrate a flexible capacitive sensor with 50□□m high CNTs interdigitated electrodes on poly-dimethylsiloxane (PDMS) substrate. The tests show that its typical capacitance change is several dozens of fF and the gauge factor ranges 4.6~6.5 for strain and bending curvature measurement; the sensitivity of tactile force is 1.11%/N; the proximity distance can be detected up to 1500□m away from the sensor.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XIV 第1章 序論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 3 1-3.1 應變感測器 3 1-3.2 觸覺感測器 6 1-3.3 近接感測器 7 1-3.4 撓性感測器之黏著性的問題 7 1-3.5 奈米碳管整合微機電製程之介紹 9 1-4 研究目標 9 第2章 三維複合材料及電容式感測器之設計 29 2-1 製程設計-三維奈米碳管/高分子材料之複合材料 29 2-2 指叉狀結構之電容感測機制 30 2-2.1 應變感測之能力 32 2-2.2 彎曲曲率感測之能力 35 2-2.3 觸覺感測之能力 36 2-2.4 近接感測之能力 37 2-3 整合觸覺感測及近接感測器之設計 37 第3章 製程與實驗 51 3-1 製程步驟 51 3-2 光罩佈局 52 3-3 製程結果 53 3-4 問題改善 54 3-4.1 電子束蒸鍍鐵膜之問題 54 3-4.2 高分子材料從矽模具脫模之情況 56 3-4.3 不穩定的感測訊號 57 第4章 量測結果 66 4-1 電訊號之量測及溫度變化和溫度對電容值之影響 66 4-2 應變感測能力之量測 67 4-3 彎曲曲率感測能力之量測 68 4-4 觸覺感測能力之量測 69 4-5 近接感測能力之量測 70 4-6 整合觸覺/近接感測器之量測 71 第5章 結論與未來工作 83 5-1 結論 83 5-2 未來工作 84 參考文獻 86

    [1] K.E. Petersen, “Silicon as a Mechanical Material”, Proceedings of the IEEE, 70, pp 420-457, 1982.
    [2] R.T. Howe, R.S. Muller, K.J. Gabriel, and W.S.N. Trimmer, IEEE spectrum, 27, pp 29-35, 1990.
    [3] 丁志明等, “微機電系統技術與應用”, 國科會精密儀器發展中心, 2003
    [4] ITRS Roadmap 2005, www.itrs.net
    [5] http://bleex.me.berkeley.edu/research/exoskeleton/bleex/
    [6] A. Dittmar, A. Lymeris, “Smart Clothes and Associated Wearable Devices for Biomedical Ambulatory Monitoring,” Transducers 2005, Seoul, Korea, June pp 221-227, 2005.
    [7] F. Axisa, P.M. Schmitt, C. Gehin, G. Delhomme, E. Mcadams, A. Dittmar, “Flexible Technologies and Smart Clothing for Citizen Medicine, Home Healthcare, and Disease Prevention,” IEEE Trans. Inf. Technol. Biomed., 9, pp 325-336, 2005.
    [8] G. Kita, Y. Suzuki, M. Shikida, and K. Sato, “Development of Fabric Force Sensor for Detecting Normal and Lateral Force by Applying Umbonal Fiber,” Transducers 2009, Denver, CO, USA, June, pp 1746-1749, 2009.
    [9] A.L. Window, G.S. Holister, Strain Gauge Technology., 2nd Ed., New York, NY: Applied Science Publisters LTD, 1983.
    [10] C. S. Smith, “Piezoresistance Effect in Germanium and Silicon,” Phys. Rev, 94, pp 42-49, 1954.
    [11] W. Thomson (Lord Kelvin), “On The Electrodynamic Qualities of Metals,” Proc. Royal Society, pp 546-550, 1857.
    [12] K. Rajanna, S. Mohan, “Longitudinal and Transverse Strain Sensitivity Of Gold Film,” J. Mater. Sci. Lett., 6, pp 1027–1029, 1987.
    [13] K. Rajanna, S. Mohan, “Studies of Meandering Path Thin Film Strain Gage,” Sensors and Actuators A, 15,pp 297–303, 1988.
    [14] J. Gouault, M. Hubin, G. Richon, B. Eudeline, “The Electrochemical Behavior of a Full Component (Dielectric and Cu/Ni Constantan Alloy) for Thin Film Strain Gage Deposited upon Steel-Substrate,” Vacuum, 27,pp 363–365, 1977.
    [15] A. Garcia-Alonso, J. Garcia, E. Castano, I. Obieta, F.J. Gracia, “Strain Sensitivity and Temperature Influence on Sputtered Thin Films for Piezoresistive Sensors,” Sensors and Actuators A, 37, pp 784–789, 1993.
    [16] P.J. French, A.G.R. Evans, “Polycrystalline Silicon Strain Sensors,” Sensors and Actuators A, 8, pp 219–225, 1985.
    [17] C. Hautamaki, S. Zurn, S.C. Mantell, D.L. Polla, “Experimental Evaluation of MEMS Strain Sensors Embedded in Composites,” Journal of Microelectromechanical Systems, 8(3), pp 272–279, 1999.
    [18] L. Cao, T.-S. Kim, S. C. Mantell, D. L. Polla, “Simulation and Fabrication of Piezoresistive Membrane Type MEMS Strain Sensors,” Sensors and Actuators A, 80, pp 273–279, 2000.
    [19] J. Engel, J. Chen, Z. Fan, C. Liu, “Polymer Micromachined Multimodal Tactile Sensors,” Sensors and Actuators A, 117, pp 50–61, 2005.
    [20] B.B. Carter, J.F. Shannon, J.R. Forshaw, “Measurement of Displacement and Strain by Capacitance Methods,” Proc. Inst. Mech. Eng., 5, pp 215–221, 1945.
    [21] C. Andeen, J. Fontanel, D. Schuele, “Capacitive Gauge for Accurate Measurement of High Pressures,” Rev. Sci. Instrum., 42, pp 495–502, 1971.
    [22] A. Arshak, K. Arshak, D. Morris, O. Korostynska, E. Jafer, “Investigation of TIO2 Thick Film Capacitors for Use as Strain Gauge Sensors,” Sensors and Actuators A, 122, pp 242–249, 2005.
    [23] J. Aebersold, K. Walsh, M. Crain, M. Martin, M. Voor, J.-T. Lin, D. Jackson, W. Hnat and J. Naber, “Design and Development of a MEMS Capacitive Bending Strain Sensor,” J. Micromech. Microeng., 16, pp 935–942, 2006.
    [24] R. Matsuzaki, A. Todoroki, “Wireless Flexible Capacitive Sensor Based on Ultra-Flexible Epoxy Resin for Strain Measurement of Automobile Tires,” Sensors and Actuators A, 140, pp 32–42, 2007.
    [25] R. Matsuzakia, T. Keating, A. Todorokia, N. Hiraokaa, “Rubber-Based Strain Sensor Fabricated Using Photolithography for Intelligent Tires,” Sensors and Actuators A, 148, pp 1-9, 2008.
    [26] J. Engel, J. Chen, and C. Liu, “Development of Polymide Flexible tactile sensor skin,” J. Micromech. Microeng., 13, pp 359-366, 2003.
    [27] M. Shikida, T. Shimizu, K. Sato, and K. Itoigawa, “Active Tactile Sensor for Detecting Contact Force and Hardness of an Object,” Sensor Actuators A, 103, pp 213-218, 2003.
    [28] C. Liu, “Recent Developments in Polymer MEMS,” Advanced Materials, 19, pp 3783-3790, 2007.
    [29] K. Motoo, F. Arai, and T. Fukuda, “Piezoelectric Vibration-Type Tactile Sensor Using Elasticity and Viscosity Change of Structure,” IEEE Sensors J., 7, pp 1044 – 1051, 2007.
    [30] C. Li, P.-M. Wu,S. Lee, A. Gorton, M.J Schulz, C.H. Ahn, “Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer,” J. Microelectromech. Syst., 17, pp334 - 341, 2008.
    [31] B. Charlot, F. Parraon, N. Galy, S. Basrour, and B. Courtois, “A Sweeping Mold Integrated Fingerprint Sensor with 256 Tactile Microbeams,” J. Micromech. Microeng., 13, pp 636–644, 2009.
    [32] N. Sato, S. Shigematsu, H. Morimura, M. Yano, K. Kudou, T. Kamei, and K. Machida, “Novel Surface Structure and Its Fabrication Process for MEMS Fingerprint Sensor,” IEEE Transactions Electron Device, 52, pp 1026–1032, 2005.
    [33] H. K. Kim, S. G. Lee, and E. Yoon, “A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment,” J. Microelectromech. Syst., 15, pp 1681-1686, 2006.
    [34] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, “Normal and Shear Force Measurement Using a Flexible Polymer Tactile Sensor with Embedded Multiple Capacitors,” J. Microelectromech. Syst., 17, pp 934-942, 2008.
    [35] M. Y. Cheng, X. H. Huang, C. W. Ma and Y. J. Yang, “A Flexible Capacitive Tactile Sensing Array with Floating Electrodes,” J. Micromech. Microeng., 19, pp 115001–115011, 2009.
    [36] R. C. Ruo, “Sensor Technologies and Microsensor Issues for Mechatronics Systems,” IEEE/ASME Trans. Mechatron., 1, pp 39–49, 1996.
    [37] R. Volpe, and R. Ivlev, “A Survey and Experimental Evaluation of Proximity Sensors for Space Robots,” in Proc. IEEE Int. Conf. Robot. Autom., 4, pp 3466–3473, 1994.
    [38] A. Bonen, R. E. Saad, K. C. Smith, and B. Benhabib, “A Novel Electrooptical Proximity Sensor for Robotics: Calibration and Active Sensing,” IEEE Trans. Robot. Autom., 13, pp 377–386, 1997.
    [39] S. Hongo, K. Nakamura, and N. Hosokawa, “Proximity Sensors Utilizing an Evanescent Acoustic Field Formed by Flexural Plate Waves,” in Proc. Ultrasonics Symp., 1, pp 475–478, 1997.
    [40] K. Koibuchi, K. Sawa, T. Honma, T. Hayashi, K. Ueda, and H. Sasaki,“Loss Estimation and Sensing Property Enhancement for Eddy-Currenttype Proximity Sensor,” IEEE Trans. Magn., 42, pp 1447–1450, 2006.
    [41] Z. Chen and R. C. Luo, “Design and Implementation of Capacitive Proximity Sensor Using Microelectromechanical Systems Technology,” IEEE Transactions on Industrial Electronics, 45, pp 886–894, 1998.
    [42] R. H. Bhuiyan and R. A. Dougal, “Proximity Coupled Interdigitated Sensors to Detect Insulation Damage in Power System Cables,” IEEE Sens. J., 7, pp 1589-1596, 2007.
    [43] H. Hasegawa, Y. Mizoguchi, K. Tadakuma, A. Ming, M. Ishikawa and M. Shimojo, “Development of Intelligent Robot Hand Using Proximity, Contact and Slip Sensing,” ICRA 2010, Anchorage, Alaska, USA, May, 2010, pp 777-784.
    [44] H.-K. Lee, S.-I. Chang, and E. Yoon, “Implementation of Tactile and Proximity Sensing Capability on a Single Polymer Platform Using Shared Electrodes,” IEEE Sensors Journal, 9, pp 1748–1755, 2009.
    [45] Y. Hasegawa, M. Shikida, H. Sasaki, K. Itoigawa, and K. Sato, “An Active Tactile Sensor for Detecting Mechanical Characteristics of Contacted Objects”, J. Micromech. Microeng., 16, pp 1625-1632, 2006.
    [46] H. C. Lim, B. Schulkin, M. J. Pulickal, S. Liu, R. Petrova, G. Thomas, S. Wagner, K. Sidhu, and J. F. Federici, “Flexible Membrane Pressure Sensor”, Sensor Actuators A., 119, pp 332-335, 2005.
    [47] E. S. Hwang, Y. J. Kim, B. K. Ju, “Flexible Polysilicon Sensor Array Modules Using “Etch-Release” Packaging Scheme”, Sensor Actuators A., 112, pp 135-141, 2004.
    [48] P. S. Ho and F. Faupel, “Adhesion and Deformation Study of Metal/Polymer Structures by a Stretch Deformation Method,” Appl. Phys. Lett., 53, pp 1602-1604, 1988.
    [49] N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson and G. M. Whitesides, “Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer,” Nature, 393, pp 146-149, 1998.
    [50] S. P. Lacour, S. Wagner, Z. Huang and Z. Suo, “Stretchable Gold Conductors on Elastomeric Substrates,” Appl. Phys. Lett., 82, pp 2404-2406, 2003.
    [51] K. J. Lee, K. A. Fosser and R. G. Nuzzo, “Fabrication of Stable Metallic Patters Embedded in Poly(Dimethylsiloxane) and Model Applications in Non-Planar Electronic and Lab-On-Chip Device Patterning,” Adv. Funct. Mater., 15, pp 557-566, 2005.
    [52] K. S. Lim, W.-J. Chang, Y.-M. Koo and R. Bashir, “Reliable Fabrication Method of Transferable Micron Scale Metal Pattern for Poly(Dimethylsiloxane) Metallization,” Lab on Chip, 6, pp 578–580, 2006.
    [53] A. C. Siegel, D. A. Bruzewicz, D. B. Weibel, and G. M. Whitesides, ”Microsolidics Fabrication of Three-Dimensional Metallic Microstructures in Poly(Dimethylsiloxane),” Adv. Mater., 19, pp 727–733, 2007.
    [54] Y. J. Jung, S. Kar, S. Talapatra, C. Soldano,G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned Carbon Nanotube-Polymer Hybrid Architectures for Diverse Flexible Electronic Applications,” Nano Lett., 6, pp 413-418, 2006.
    [55] C.-X. Liu and J.-W. Choi, “Patterning Conductive PDMS Nanocomposite in an Elastomer Using Microcontact Printing,” J. Micromech. Microeng., 19, pp 085019(7), 2009.
    [56] W. Fang, H.-Y. Chu, W.-K. Hsu, T.-W. Cheng, and N.-H. Tai, “Polymer-Reinforced, Aligned Multiwalled Carbon Nanotube Composites for Microelectromechanical Systems Applications,” Adv. Mater., 17, pp 2987-2992, 2005.
    [57] X. Song, S. Liu, Z. Gan, Q. Lv, H. Cao, H. Yan, “Controllable Fabrication of Carbon Nanotube-Polymer Hybrid Thin Film for Strain Sensing,” Microelectronic Engineering, 86, pp 2330-2333, 2009.
    [58] C.-M. Lin, L.-Y. Lin, and W. Fang, “Monolithic Integration of Carbon Nanotubes Based Physical Sensors,” in Proc.23rd IEEE Int. Conf. Micro Electro Mech. Syst., Hongkong, China, January, 2010, pp 55-58.
    [59] C.-F. Hu, W.-S. Su, and W. Fang, “The Integration of CNTs-Based Flexible Tactile Sensor and Flexible Circuit by Polymer Molding Process,”Transducers’11, Beijing, China, June, 2011, pp 414-417.
    [60] L. Ci, J. Suhr, V. Pushparaj, X. Zhang, and P. M. Ajayan, “Continuous Carbon Nanotube Reinforced Composites,” Nano Lett., 8, pp 2762-2766, 2008.
    [61] C. Wei, D. Srivastav, and K. Cho, “Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites,” Nano Lett., 2, pp 647-650, 2002.
    [62] X. J. He, J. H. Du, Z. Ying, H. M. Cheng, ” Positive Temperature Coefficient Effect in Multiwalled Carbon Nanotube/High-Density Polyethylene Composites,” Appl. Phys. Lett., 86, pp 062112 - 062112-3, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE