簡易檢索 / 詳目顯示

研究生: 陳建佑
Chen, Chien-Yu
論文名稱: 含苯基-咪唑配位基及吡唑-吡啶輔助配位基銥金屬錯合物之光物理性質研究
Photophysical Property of Iridium Biscarbene Complexes in Different N^N Ligands
指導教授: 陳益佳
Chen, I-Chia
口試委員: 鄭建鴻
Cheng, Chien-Hong
刁維光
Diau, Wei-Guang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 143
中文關鍵詞: 銥金屬碳烯錯合物有機發光二極體
外文關鍵詞: Ir(fpmi)2(dmpypz), Ir(mpmi)2(pybi), iridium carbene complexes, interligand energy transfer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究一系列含碳烯配位基及新型N^N輔助配位基銥金屬錯合物之光物理性質與激發態放光機構。藍色錯合物分別為bis(1-(4-fluorophenyl)-3-methylimidazolin-2-ylidene-C,C2’)(2-(pyrazol-5-yl)pyridine) iridium(III), [Ir(fpmi)2(pypz)], B1, bis(1-(4-fluorophenyl)-3-methyl imidazolin-2-ylidene-C,C2’)(4-methyl-2-(pyrazol-5-yl)pyridine) iridium(III), [Ir(fpmi)2(mpypz)], B2, bis(1-(4-fluorophenyl)-3-methylimidazolin-2-ylidene- C,C2’)(3,5-dimethyl-2-(pyrazol-5-yl) pyridine)iridium(III), [Ir(fpmi)2(dmpypz)], B3,綠色錯合物為bis(1-(1-(4-tolyl)-3-methyl-imidazolin2-ylidene-C,C2’) (2-(pyridine-2-yl)benzo[d]imidazole) , [Ir(mpmi)2(pybi)], G。以266 nm光源激發下,錯合物被激發到1+ 1MLCT (fpmi)能態。從奈秒到微秒的測量結果,我們得到這些錯合物的輻射衰減常數大約為1.5×105~5.2×104 s-1,B1與B3主要放光能階為T1/T2,生命期分別為928、2331 ns,B2主要放光能階為T3,生命期為294 ns,G主要放光能階為T2/T3,生命期為8264 ns。從皮秒的測量結果我們觀察到錯合物B3與G的上升時間分別約為34 ps與20 ps,快於B1與B2的上升時間90 ps與 76 ps。上升時間以解析度更佳之瞬態吸收光譜再次確認並得到相似的結果。此快速的上升時間代表能量從碳烯配位基單重激發態迅速轉換到輔助配位基之三重激發態,錯合物B3與G有較快的上升時間可以避免掉一些淬熄及非放光過程,因此會有較好的外部量子效率。我們並利用密度泛函理論(DFT)計算此系列錯合物之電子結構輔助探討實驗結果。


    We investigate the emission property and relaxation mechanism of excited states of Iridium biscarbene complexes with varied ancillary N^N ligands; they are blue complexes bis(1-(4-fluorophenyl)-3-methylimidazolin-2-ylidene-C,C2’)(2-(pyrazol -5-yl)pyridine)iridium(III), Ir(fpmi)2(pypz) B1, bis(1-(4-fluorophenyl) -3-methylimidazolin-2-ylidene-C,C2’)(4-methyl-2-(pyrazol-5-yl)pyridine)iridium(III), Ir(fpmi)2(mpypz) B2, bis(1-(4-fluorophenyl)-3-methylimidazolin-2-ylidene-C,C2’) (3,5-dimethyl-2-(pyrazol-5-yl) pyridine)iridium(III), Ir(fpmi)2(dmpypz) B3, and green complex bis(1-(1-(4-tolyl)-3-methyl-imidazolin2-ylidene-C,C2’)(2-(pyridine-2-yl) benzo[d]imidazole), Ir(mpmi)2(pybi) G. At 266-nm excitation the ancillary + 1MLCT (fpmi) states are accessed. According to the results of nano-microsecond measurements and quantum yields at long wavelengths, we obtained the radiative rate constants kr of these complexes to be 0.5-1.5105 s-1. According to the values of kr, long lifetimes, and the experimental data we then assigned the emitting states to be triplet interligand 3(ancillary)* mixed extensively with triplet metal-to-ligand charge transfer (3MLCT). From picosecond lifetime measurements, we observe that B3 and G have a rise time constant ~34 ps, ~20 ps, faster than the B1 and B2 ~90 ps, ~76 ps, respectively in the emission curves. These fast rises are also confirmed with the results of transient absorption measurements. The fast rise corresponds to rapid conversion from singlet manifold centered at biscarbene ligand to the triplet states centered at the ancillary ligand. More rapid conversion rates in B3 and G may partially explain excellence external quantum efficiency that can avoid quenching and annihilation processes. We employed the quantum chemical calculations-density functional theory (DFT) to obtain their electronic structures and to aid in interpreting the experimental data.

    目 錄 摘要……………………………………………………………………….I Abstract……………………………………………………………………………... II 目錄……………………………………………………………………..III 表目錄………………………………………………………………...VI 圖目錄………………………………………………………………VIII 第一章 緒論……………………………………………………………..1 1.1 有機發光二極體………………………………………………..1 1.2 文獻回顧………………………………………………………..1 1.3 研究動機………………………………………………………..8 第二章 實驗系統設置與樣品製備…………………………………....10 2.1 紫外光-可見光吸收分光光度計與螢光分光光度計.............10 2.2 奈秒(nanosecond)時間解析放光光譜技術…………………11 2.3 時間相關光子計數系統……………………………………...13 2.3.1 原理……………………………………………………………13 2.3.2 鑑別器.........................................................................................16 2.3.2.1 前緣式鑑別器(Leading-Edge Discriminator,LED).........16 2.3.2.1 分數式鑑別器............................................................................17 2.4 時間相關單光子技術系統架設…………………..………….18 第三章 結果……………………………………………………………20 3.1 光物理性質…………………………………..……………….20 3.2 理論計算結果…………………………………..…………….21 3.2.1 錯合物之填滿及未填滿軌域……………………..…………..21 3.2.2 垂直躍遷及電荷轉移能階…………………………..………..23 3.2.3 錯合物垂直躍遷之理論計算結果…………………..………..23 3.3 錯合物吸收光譜及放光光譜……………………….………..24 3.4 時間解析光譜…………………………………………….…..26 3.4.1 長時域放光衰減曲線…………………………………………26 3.4.2 無除氧之放光曲線……………………………………………28 3.4.3 短時域放光曲線………………………………………………29 3.5 瞬態吸收光譜………………………………………………...29 3.6 量子產率(Quantum yield)量測……………………………….30 第四章 指認與討論…………………………………………………..122 4.1 錯合物吸收光譜…………………………………………….122 4.2 錯合物放光光譜…………………………………………….123 4.3 時間解析光譜……………………………………………….125 4.3.1 長時域放光曲線放光能態指認……………………………..125 4.3.1.1 B1……………………………………………………………125 4.3.1.2 B2……………………………………………………………126 4.3.1.3 B3……………………………………………………………127 4.3.1.4 G……………………………………………………………..127 4.3.2 動力學模型及短時域放光曲線……………………………..129 4.4 量子產率(Quantum yield)與錯合物之放光效率…………..131 4.5 影響放光效率因素討論…………………………………….131 第五章 結論…………………………………………………………..140

    1. Tang, C. W.; VanSlyke, S. A.; Chen, C. H., J. Appl. Phys. 1989, 65 (9), 3610-3616.
    2. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Nature 1998, 395 (6698), 151-154.
    3. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E., J. Am. Chem. Soc. 2001, 123 (18), 4304-4312.
    4. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R., Appl. Phys. Lett. 1999, 75 (1), 4-6.
    5. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., J. Appl. Phys. 2001, 90 (10), 5048-5051.
    6. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E., Inorg. Chem. 2001, 40 (7), 1704-1711.
    7. Hay, P. J., J. Phys. Chem. A 2002, 106 (8), 1634-1641.
    8. Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E., J. Am. Chem. Soc. 2003, 125 (24), 7377-7387.
    9. Dedeian, K.; Shi, J.; Shepherd, N.; Forsythe, E.; Morton, D. C., Inorg. Chem. 2005, 44 (13), 4445-4447.
    10. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Appl. Phys. Lett. 2001, 79 (13), 2082-2084.
    11. Holmes, R. J.; Forrest, S. R.; Tung, Y.-J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E., Appl. Phys. Lett. 2003, 82 (15), 2422-2424.
    12. Tokito, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F., Appl. Phys. Lett. 2003, 83 (3), 569-571.
    13. Gu, X.; Fei, T.; Zhang, H.; Xu, H.; Yang, B.; Ma, Y.; Liu, X., J. Phys. Chem. A 2008, 112 (36), 8387-8393.
    14. Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K., J. Am. Chem. Soc. 2003, 125 (42), 12971-12979.
    15. You, Y.; Park, S. Y., Dalton Trans. 2009, (8), 1267-1282.
    16. Chi, Y.; Chou, P.-T., Chem. Soc. Rev. 2010, 39 (2), 638-655.
    17. Gawelda, W.; Cannizzo, A.; Pham, V.-T.; van Mourik, F.; Bressler, C.; Chergui, M., J. Am. Chem. Soc. 2007, 129 (26), 8199-8206.
    18. Bhasikuttan, A. C.; Suzuki, M.; Nakashima, S.; Okada, T., J. Am. Chem. Soc. 2002, 124 (28), 8398-8405.
    19. Andersson, J.; Puntoriero, F.; Serroni, S.; Yartsev, A.; Pascher, T.; Polı́vka, T.; Campagna, S.; Sundström, V., CPL 2004, 386 (4–6), 336-341.
    20. Hedley, G. J.; Ruseckas, A.; Samuel, I. D. W., J. Phys. Chem. A 2008, 113 (1), 2-4.
    21. Rogers, J. E.; Slagle, J. E.; Krein, D. M.; Burke, A. R.; Hall, B. C.; Fratini, A.; McLean, D. G.; Fleitz, P. A.; Cooper, T. M.; Drobizhev, M.; Makarov, N. S.; Rebane, A.; Kim, K.-Y.; Farley, R.; Schanze, K. S., Inorg. Chem. 2007, 46 (16), 6483-6494.
    22. You, Y.; Kim, K. S.; Ahn, T. K.; Kim, D.; Park, S. Y., J. Phys. Chem. C 2007, 111 (10), 4052-4060.
    23. Wu, S.-H.; Ling, J.-W.; Lai, S.-H.; Huang, M.-J.; Cheng, C. H.; Chen, I. C., J. Phys. Chem. A 2010, 114 (38), 10339-10344.
    24. O’Conner, D. V.; Phillips, D. Time-Correlated Single Photon Counting; Academic Press: London, 1984.
    25. Hsieh, C.-H.; Wu, F.-I.; Fan, C.-H.; Huang, M.-J.; Lu, K.-Y.; Chou, P.-Y.; Yang, Y.-H. O.; Wu, S.-H.; Chen, I. C.; Chou, S.-H.; Wong, K.-T.; Cheng, C.-H., Chem. Eur. J 2011, 17 (33), 9180-9187.
    26. Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S., Chem. Mater. 2005, 17 (23), 5712-5719.
    27. Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau, R.; Thompson, M. E.; Holmes, R. J.; Forrest, S. R., Inorg. Chem. 2005, 44 (22), 7992-8003.
    28. Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K., J. Am. Chem. Soc. 2003, 125 (42), 12971-12979.
    29. Reynolds, G. A.; Drexhage, K. H., OptCo 1975, 13 (3), 222-225.
    30. Endo, A.; Suzuki, K.; Yoshihara, T.; Tobita, S.; Yahiro, M.; Adachi, C., CPL 2008, 460 (1–3), 155-157.
    31. Hofbeck, T.; Yersin, H., Inorg. Chem. 2010, 49 (20), 9290-9299.
    32. King, K. A.; Watts, R. J., J. Am. Chem. Soc. 1987, 109 (5), 1589-1590.
    33. Wilde, A. P.; King, K. A.; Watts, R. J., J. Phys. Chem. 1991, 95 (2), 629-634.
    34. Rausch, A. F.; Thompson, M. E.; Yersin, H., J. Phys. Chem. A 2009, 113 (20), 5927-5932.
    35. 盧昆毅,國立清華大學化學系2011博士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE