簡易檢索 / 詳目顯示

研究生: 陳煥達
Chen, Fan-Ta
論文名稱: 運用於高速傳輸介面之單迴路資料時脈還原及電流耦合轉換串化及解串化器
Single-Loop Clock Data Recovery and Transformer-Coupled Current SerDes for High Speed Transmission Interface
指導教授: 吳仁銘
Wu, Jen-Ming
口試委員: 徐碩鴻
Hsu, Shuo-Hung
黃錫瑜
Huang, Shi-Yu
蘇朝琴
Su, Chau-Chin
陳巍仁
Chen, Wei-Zen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 85
中文關鍵詞: 時脈資料回復電路串化及解串化器電流耦合轉換電流型邏輯頻率鎖定迴路相位鎖定迴路延展式相位偵測器相位和頻率鎖定迴路二元式相位偵測器多工器解多工器栓鎖電路
外文關鍵詞: Clock and Data Recovery, Serializer-and-Deserializer, Transformer-Coupled Current, Current-Mode-Logic, Frequency Lock Loop, Phase Lock Loop, Extended Phase Detector, Phase-and-Frequency Lock Loop, Bang Bang Phase Detector, MUX, DEMUX, Latch
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要提出一個串化-解串化器(SerDes)以及資料時脈還原電路(CDR)來達成高速的資料處理在有線通訊系統之應用。
    所設計的二對一多功器與一對二多功器為處理最高40 Gb/s資料傳輸速度。相較於傳統的電流型邏輯電路(CML),變壓器耦合電流(TCC)的電路被設計成更高的源級電流(Drain Currnet)和更低的供應電壓(Supply Voltage)。這兩顆晶片以65nm CMOS製程製作出,消耗低於一百毫瓦(<100 mW)並且操作在0.8伏特的提供電壓。經過串化及解串化的40 Gb/s的 2^7–1虛擬隨機二進位序列資料驗證了串化與解串化界面的功能。
    所設計的線性資料時脈還原電路(CDR)操作在全速式2.56/3.2Gb/s資料。延展式相位偵測器(EPD)用來取代傳統Hogge的相位偵測器。資料時脈還原電路在0.18-μm CMOS製程實作出和0.8×1.0 mm^2晶片面積。這個晶片展現出一個方均根2.12 ps低抖動的還原時脈和在 231 – 1虛擬隨機二進位序列的3.5 × 10^-9錯誤更正率。在提供電壓1.8伏特下消耗136 mW。
      所設計的二進位資料時脈還原電路(CDR)操作在全速式10Gb/s資料。所提出的旋轉式相位頻率偵測器(RPFD)用在無參考時脈的資料還原電路。單一迴路之資料時脈還原電路以90nm CMOS製程製作出0.71-mm^2晶片尺寸。在10-Gb/s的2^31–1虛擬隨機二進位序列下,資料時脈還原電路追蹤1.48 GHz捕捉範圍之自由時脈訊號並且鎖定於20 μs的追蹤時間。同時間,還原時脈訊號和還原資料訊號的峰對峰值抖動分別展現出5 ps和15.11 ps。在提供電壓1.0伏特下量測的晶片消耗了92 mW。


    The thesis proposes a serializer-and-deserializer (SerDes) with a clock and data recovery (CDR) to achieve high speed data processing for the wire-line communication system.
    The proposed 2:1 MUX and 1:2 DEMUX design deals with the maximum 40 Gb/s data transmission rate. A transformer-coupled current (TCC) schematics is designed to more drain current and less supply voltage than the current-mode-logic (CML). The two chips are implemented in 65 nm standard CMOS technology and consume sub-hundred milliwatt operation power at the supply voltage of 0.8-V. The measured serialized-and-deserialized 40-Gb/s PRBS of 2^7–1 verify the function of SerDes interface.
    The proposed linear-type CDR design operates at full-rate data of 2.56/3.2Gb/s. An Ex-tended Phase Detector (EPD) circuit is proposed to replace the Hogge`s PD. The CDR circuit is fabricated in a 0.18μm 1P6M CMOS process in an area of 0.8×1.0 mm^2. This CDR chip exhibits a low jitter performance of 2.12 ps RMS in the recovered clock and a BER is 3.5 × 10^-9 with PRBS of 2^31–1 sequence. The power consumption is 136mW with a 1.8V supply.
    The proposed binary-type CDR design operates at full-rate 10 Gb/s data. A rotational phase frequency detector (RPFD) is proposed to realize reference-less CDR. The single-loop CDR is fabricated in TSMC mixed-signal 1P9M 90-nm standard CMOS process with overall die size of 0.71-mm^2. With input 10-Gb/s data of a 2^31–1 PRBS, the CDR tracks free running clock over the capture range of 1.48 GHz and locks in the acquisition time of 20 μs. At the same time, the peak-to-peak jitter shows only 5.0 ps in the recovered clock and exhibits 15.11 ps in the recovered data. The measured chip consumes 92 mW with 1.0-V supply voltage.

    Abstract…………………………………………………………………………………………I Acknowledge-ment ……………………………………………………………………………II Contents………………………………………………………………………………………III List of Figures ………………….…………………………………………………………IV List of Tables…………………………………………………………………………………V Chapter 1 Introduction……………….……………………………………………………1 1.1 Overview of Thesis…………………………………………………..……………7 Chapter 2 Clock Date Recover and Serializer-Deserializer…………………….…8 2.1. CDR………………………………………...………………………………………..8 2.2. SerDes……………………………………...……………………………………..11 Chapter 3 Extended Phase Detector 2.56/3.2 Gb/s CDR and Single-Loop CDR with Rotational Phase Frequency Detector…...…………………………………...….…12 3.1 Dual-loop CDR of PLL and FLL ………………………..………………………13 3.2 Phase Lock Loop……………………………………………………………………14 3.2.1. Extended Phase Detector ……………………….………………………………14 3.2.2. Charge Pump and Loop Filter…………………..………………………………18 3.2.3. Voltage Control Oscillator……………………….……………………………19 3.3 Frequency Lock Loop………………………………………………………………20 3.3.1. Phase-Frequency Detector…………………………….…………………………20 3.3.2. Charge Pump and Loop Filter………………………...……….………………21 3.3.3. Dual-Mode Divider…………………………………………………………………22 3.4 Digital Assisted Lock Detector……………………………….………………23 3.5 CDR Chip Measurement……………………………………………….……………24 3.6 Single-loop PFLL Architecture…………………………………………………26 3.7 Rotational Phase Frequency Detector Architecture……………….………28 3.7.1. Bang Bang Phase Detector………………………………………………………28 3.7.2. Voltage-to-Current Converter with Crossbar Switch………..…….……29 3.7.3. First Version Phase Roller .………………….…………………………….30 3.7.4. Second Version Phase Roller Version ……….………...…………………31 3.8 Rotational Phase Frequency Detector Waveform…………..……….………34 3.8.1. Frequency-Tracking Mode……………………..……………………………….34 3.8.2. Phase-Tracking Mode……………………….……………………………………36 3.8.3. State Diagram…………………………………..……………………………….36 3.9 Voltage Controlled Oscillator with Clock Buff-er……….………………38 3.10 Acquisition Time Analysis…………………………….…….…………………39 3.10.1. Frequency-Tracking PFLL Model………………...……………………………39 3.10.2. Phase-Tracking PFLL Model……………………..……………………….……40 3.10.3. Frequency Acquisition Time Analysis……………………………….………41 3.11 CDR Chip Measurement……………………………………………………….……45 3.12 Discussion……………………………………………..…………………….……50 3.12.1. System Enhancement:Time Delay Issue……………..……………………….50 3.12.2. System Enhancement:Window Area Issue…………...……………………….52 3.12.3. Frequency and Phase Loop Stability……………….…………………………54 Chapter 4 40-Gb/s 0.8-V 2:1 MUX and 1:2 DEMUX with Transformer-Coupled Current Technique for SerDes Interface………………………………….…………57 4.1 Transformer-Coupled Current Technique……..………………………………58 4.2 Architecture………………………………….……...………………………….61 4.2.1. TCC latch………………………………...……………………………….…62 4.2.2. Drain Current………….…………………………………………………….63 4.2.3. TCC Latch with Clock Buff-er…………….……………………………..64 4.2.4. TCC Multiplexer………………………………….……………………..….65 4.2.5. Distributed Data Buffer………………………..………………………..66 4.3 Monolithic Transformer………………………………………………………….68 4.3.1. Transformer Design……………………………………...………………………68 4.3.2. Transformer EM Model……..………………..………………………………….70 4.3.3. Current Transfer Ratio……..………………..………………..…………….72 4.3.4. Transformer-Coupled Current, IS……..………………..…………….…….74 4.4 Measurement Result…………………………………….…………………………75 Chapter 5 Conclusion………………………………………………..……………79 Bibliography…...…………………………………………………..………………………81 Vita ………………………………………………………………………………..…………86

    [1] Y.-H. Hsu, M.-S. Kao, H.-C. Tzeng, C.-T. Chiu, J.-M. Wu, and S.-H. Hsu, “A 20 Gbps Scalable Load Balanced Birkhoff-von Neumann Symmetric TDM Switch IC with SERDES Interfaces,” in IEEE Design Automation Conf., 2007, pp. 102–103.
    [2] M.-S. Lin, C.-C. Tsai, and et al., “A 5Gb/s low-power PCI express/USB3.0 ready PHY in 40nm CMOS technology with high-jitter immunity,” in IEEE Asian Solid-State Circuits Conf., Nov. 16-18 2009, pp. 177–180.
    [3] B. Razavi, Design of Integrated Circuits for Optical Communication Systems. New York: McGraw-Hill, 2003.
    [4] J.-K. Woo, H. Lee, W.-Y. Shin, H. Song, D.-K. Jeong, and S. Kim, “A Fast-Locking CDR Circuit with an Autonomously Reconfigurable Charge Pump and Loop Filter,” in IEEE Asian Solid-State Circuits Conf., 2006, pp. 411–414.
    [5] N. Suzuki, K. Nakura, S. Kozaki, H. Tagami, M. Nogami, and J. Nakagawa, “Single Platform 10G-EPON 10.3-Gbps/1.25-Gbps Dual-Rate CDR with Fast Burst-Mode Lock Time Employing 82.5 GS/s Sampling IC and Bit-Rate Adaptive Decision Logic Circuit,”in IEEE ECOC, 2010.
    [6] C.-F. Liang, H.-L. Chu, and S.-I. Liu, “10-Gb/s Inductorless CDRs With Digital Frequency Calibration,” IEEE Trans. Circuits Syst. I, vol. 55, no. 9, pp. 2514–2524, Oct. 2008.
    [7] J. Lee and M. Liu, “A 20-Gb/s Burst-Mode Clock and Data Recovery Circuit Using Injection-Locking Technique,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 619–630, Mar. 2008.
    [8] J. Terada, K. Nishimura, S. Kimura, H. Katsurai, N. Yoshimoto, and Y. Ohtomo, “A 10.3 Gb/s Burst-Mode CDR Using a DS DAC,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2921–2928, Dec. 2008.
    [9] D. Messerschmitt, “Frequency detectors for PLL acquisition in timing and carrier recovery,” IEEE Trans. Commun., vol. CMO-27, no. 9, pp. 1288–1295, Sep. 1979.
    [10] M.-S. Hwang, S.-Y. Lee, and et al., “A 180-Mb/s to 3.2-Gb/s, continuous-rate, fast-locking CDR without using external reference clock,” in IEEE Asian Solid-State Circuits Conf., 2007, pp. 144–147.
    [11] D. Dalton and et al., “A 12.5-Mb/s to 2.7-Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2713–2725, Dec. 2005.
    [12] A. Pottbacker, U. Langmann, and H.-U. Schreiber, “A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s,” IEEE J. of Solid-State Circuits, vol. 27, no. 12, pp. 1747–1751, Dec. 1992.
    [13] J. Lee and K.-C.Wu, “A 20-Gb/s Full-Rate Linear Clock and Data Recovery Circuit With Automatic Frequency Acquisition,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3590–3602, Dec. 2009.
    [14] I. Jung, D. Shin, and et al., “A 140 Mb/s to 1.96 Gb/s Referenceless Transceiver With 7.2 μs Frequency Acquisition Time,” IEEE Transactions on VLSI Systems, vol. 19, no. 7, pp. 1310–1314, JULY 2011.
    [15] R. J. Yang, K. H. Chao, S. C. Hwu, C. K. Liang, and S. I. Liu, “A 155.52 Mbps–3.125 Gbps continuous-rate clock and data recovery circuit,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1380–1390, Jun. 2006.
    [16] C.-L. Hsieh and S.-I. Liu, “A 1–16-Gb/s Wide-Range Clock/Data Recovery Circuit With a Bidirectional Frequency Detector,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 8, pp. 487–491, Aug. 2011.
    [17] S.-H. Lin and S.-I. Liu, “Full-rate bang-bang phase/frequency detectors for unilateral continuous-rate CDRs,” IEEE Trans. Circuits Syst. I, vol. 55, no. 12, pp. 1214–1218, Dec. 2008.
    [18] N. Dodel, H. Klar, and S. Otte, “A 9.8-10.7 Gb/s Bang-Bang CDR with Automatic Frequency Acquisition Capability,” in IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), vol. 2, 2006, pp. 46–49.
    [19] Home page of the IEEE 802.3ba 40Gb/s and 100Gb/s Ethernet Task Force. (2010, Apr.). [Online]. Available: http://grouper.ieee.org/groups/ 802/3/ba/public/index.html Std.
    [20] G. Ono, K. Watanabe, T. Muto, H. Yamashita, K. Fukuda, N. Masuda, R. Nemoto, E. Suzuki, T. Takemoto, F. Yuki, M. Yagyu, H. Toyoda, M. Kono, A. Kambe, S. Umai, T. Saito, and S. Nishimura, “A 10:4 MUX and 4:10 DEMUX Gearbox LSI for 100-Gigabit Ethernet Link,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3101–3112, Dec. 2011.
    [21] Y. Suzuki, M. Mamada, and Z. Yamazaki, “Over-100-Gb/s 1:2 Demultiplexer Based on InP HBT Technology,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2594–2599, Nov. 2007.
    [22] J. Lee and B. Razavi, “A 40-Gb/s Clock and Data Recovery Circuit in 0.18-μm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2181–2190, Dec. 2003.
    [23] N. Nedovic, N. T. H. Tamura, F. M. Rotella, M. Wiklund, Y. Mizutani, Y. Okaniwa, T. Kuroda, J. Ogawa, and W. W. Walker, “A 40v44 Gb/s 3 Oversampling CMOS CDR/1:16 DEMUX,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2726–2735, Nov. 2007.
    [24] J.-K. Kim, J. Kim, G. Kim, and D.-K. Jeong, “A Fully Integrated 0.13-μm CMOS 40-Gb/s Serial Link Transceiver,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1510–1521, May 2009.
    [25] B. Razavi, “Challenges in the design of high-speed clock data recovery circuit,” IEEE Communication Magazine, pp. 94–101, Aug. 2002.
    [26] J. Song, I. Jung, M. Song, Y.-H. Kwak, S. Hwang, and C. Kim, “A 1.62 Gb/s–2.7 Gb/s Referenceless Transceiver for DisplayPort v1.1a With Weighted Phase and Frequency Detection,” IEEE Trans. Circuits Syst. I, vol. 60, no. 2, pp. 268–278, Feb. 2013.
    [27] A. Tanabe, M. Umetani, I. Fujiwara, T. Ogura, K. Kataoka, M. Okihara, H. Sakuraba, T. Endoh, , and F. Masuoka, “0.18-μm CMOS 10-Gb/s Multiplexer/Demultiplexer ICs Using Current Mode Logic with Tolerance to Threshold Voltage Fluctuation,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 988–996, June 2001.
    [28] D. Kehrer, H.-D. Wohlmuth, H. Knapp, M. Wurzer, and A. L. Scholtz, “40-Gb/s 2:1 Multiplexer and 1:2 Demultiplexer in 120-nm Standard CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1830–1837, Nov. 2003.
    [29] K. Kanda, H. Tamura, and et al., “A Single-40 Gb/s Dual-20 Gb/s Serializer IC With SFI-5.2 Interface in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3580–3589, Dec. 2009.
    [30] K. M. Sharaf and M. I. Elmasry, “Analysis and Optimization of Series-Gated CML and ECL High-Speed Bipolar Circuits,” IEEE J. of Solid-State Circuits, vol. 31, no. 2, pp. 202–211, Feb. 1996.
    [31] J. D. H. Alexander, “Clock recovery from random binary data,” IEEE Electron. Lett., vol. 11, pp. 541–542, Oct. 1975.
    [32] F.-T. Chen, J.-M. Wu, and et al., “A 10 to 11.5Ghz Rotational Phase and Frequency Detector for Clock Recovery Circuit,” in IEEE International Symposium on Circuits and Systems (ISCAS), 2011, pp. 185–188.
    [33] W. Simburger, H.-D. Wohlmuth, P. Weger, and A. Heinz, “A monolithic transformer coupled 5-W silicon power amplifier with 59% PAE at 0.9 GHz,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 432–439, Dec. 1999.
    [34] J. Y.-C. Liu, R. Berenguer, and M.-C. F. Chang, “Millimeter-Wave Self-Healing Power Amplifier With Adaptive Amplitude and Phase Linearization in 65-nm CMOS,” IEEE Transactions on Microwave Theory and Trchnique, vol. 60, no. 5, pp. 1342–1352, MAY 2012.
    [35] F. Zhang, Y. Miyahara, and B. P. Otis, “Design of a 300-mV 2.4-GHz Receiver Using Transformer-Coupled Techniques,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3190–3205, Dec. 2013.
    [36] D. Kehrer and H.-D. Wohlmuth, “A 60-Gb/s 0.7-V 10-mW Monolithic Transformer-Coupled 2:1 Multiplexer in 90 nm CMOS ,” in IEEE Compound Semiconductor IC Symp. Tech. Dig., Oct. 2004, pp. 105–108.
    [37] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked Inductors and Transformers in CMOS Technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620–628, Apr. 2001.
    [38] B. Goll and H. Zimmermann, “A 65nm CMOS Comparator with Modified latch to Achieve 7GHz/1.3mW at 1.2V and 700MHz/47μWat 0.6V,” in IEEE Int. Solid-State Circuit Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009, pp. 328–329.
    [39] M. ta Hsieh and G. E. Sobelman, “Architectures for Multi-Gigabit Wire-Linked Clock and Data Recovery,” IEEE Circuits and Systems Magazine, vol. 8, no. 4, pp. 45–57, Nov. 2008.
    [40] X. Maillard, F. Devisch, and M. Kuijk, “A 900-Mb/s CMOS Data Recovery DLL Using Half-Frequency Clock,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 711–715, Dec. 2002.
    [41] H.-H. Chang, R.-J. Yang, and S.-I. Liu, “Low Jitter and Multirate Clock and Data Recovery Circuit Using a MSADLL for Chip-to-Chip Interconnection,” IEEE Trans. Circuits Syst. I, vol. 51, no. 12, pp. 2356–2364, Dec. 2004.
    [42] J. Lee, K. Kundert, and B. Razavi, “Analysis and modeling of bangbang clock and data recovery circuits,” IEEE J. Solid-State Circuits, vol. 39, pp. 1571–1580, Sept. 2004.
    [43] C.-F. Liao and S.-I. Liu, “A 40 Gb/s CMOS Serial-Link Receiver With Adaptive Equalizationand Clock/Data Recovery,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2492–2502, Nov. 2008.
    [44] C. HOGGE., “A self correcting clock recovery circuit,” J. Lightwave Technol., vol. LT-3, pp. 1312–1314, Dec. 1985.
    [45] Ohtomo, Nishimura, and Masafumi, “A 12.5-Gb/s parallel phase detection clock and data recovery circuit in 0.13-μm CMOS,” IEEE J. of Solid-State Circuits, pp. 2052–2057, Sep. 2006.
    [46] F.-T. Chen and J.-M. Wu, “An Extended Phase Detector 2.56/3.2Gb/s Clock and Data Recovery Design with Digitally Assisted Lock Detector,” in IEEE International Symposium on Circuits and Systems (ISCAS), 2009, pp. 1831–1834.
    [47] World Stats, Miniwatts Marketing Group Std., June 2012.
    [48] D. Rennie and M. Sachdev, “A 5-gb/s cdr circuit with automatically calibrated linear phase detector,” IEEE Trans. Circuits Syst. I, vol. 55, no. 3, pp. 796–803, Apr. 2008.
    [49] J. Savoj and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate binary phase/frequency detector,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 761–767, May 2001.
    [50] M. H. Perrott, Y. Huang, and et al., “A 2.5-Gb/s Multi-Rate 0.25-mum CMOS Clock and Data Recovery Circuit Utilizing a Hybrid Analog/Digital Loop Filter and All-Digital Referenceless Frequency Acquisition,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2930–2944, Dec. 2006.
    [51] Y.-S. Seo, J.-W. Lee, H.-J. Kim, C. Yoo, J.-J. Lee, and C.-S. Jeong, “A 5-Gbit/s Clock- and Data- Recovery Circuit With 1/8-Rate Linear Phase Detector in 0.18-μm CMOS Technology,”IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 81, pp. 6–10, Aug. 2008.
    [52] W.-Y. Lee and L.-S. Kim, “A 5.4-Gb/s Clock and Data Recovery Circuit Using Seamless Loop Transition Scheme With Minimal Phase Noise Degradation,” IEEE Trans. Circuits Syst. I, vol. 59, no. 11, pp. 2518–2528, Apr. 2012.
    [53] M. Nogawa, K. Nishimura, S. Kimura, and et al., “A 10 Gb/s burst-mode CDR IC in 0.13- um CMOS,” in IEEE Int. Solid-State Circuit Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005, pp. 228–595.
    [54] W.-Z. Chen,W.-H. Chen, and K.-C. Hsu, “Three-Dimensional Fully Symmetric Inductors, Transformer, and Balun in CMOS Technology,” IEEE Trans. Circuits Syst. I, vol. 54, no. 7, pp. 1413–1423, July 2007.
    [55] K. Kanda, D. Yamazaki, T. Yamamoto, M. Horinaka, J. Ogawa, H. Tamura, and H. Onodera, “40Gb/s 4:1 MUX/1:4 DEMUX in 90nm Standard CMOS,” in IEEE Int. Solid-State Circuit Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005, pp. 152–153.
    [56] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. 2nd Edition, Cambridge University Press, 2003.
    [57] U. Singh, L. Li, and M. M. Green, “A 34 Gb/s Distributed 2:1 MUX and CMU Using 0.18μm CMOS,” IEEE J. of Solid-State Circuits, vol. 41, no. 9, pp. 2067–2076, Sep. 2006.
    [58] A. Yazdi and M. M. Green, “A 40-Gb/s Full-Rate 2:1 MUX in 0.18-μm CMOS,” IEEE Trans. Mircrow. Therory and Tech., vol. MTT-59, no. 11, pp. 2879–2887, Nov. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE