簡易檢索 / 詳目顯示

研究生: 劉育嘉
Liu, Yu-Chia
論文名稱: 以CMOS-MEMS製程結合高分子填充技術發展一可調感測範圍/靈敏度之電容式觸覺感測器
A Tunable Range/Sensitivity CMOS-MEMS Capacitive Tactile Sensor with Polymer Fill-In Technique
指導教授: 方維倫
Fang, Weileun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 92
中文關鍵詞: CMOS-MEMS電容式觸覺感測器高分子填充技術感測電路
外文關鍵詞: CMOS-MEMS, Capacitive tactile sensor, Polymer fill-in technique, Sensing circuit
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究欲利用TSMC 0.35μm 2P4M標準CMOS製程平台以及自行開發相容於CMOS後製程,設計出電容式觸覺感測晶片,透過不同堆疊層設計出兩種不同堆疊型態的感測器,並將高分子材料結合CMOS後製程當中,將觸覺感測器直接封裝。期望在相同感測面積下能有較高感測電容值,並藉由不同比例之高分子形成不同靈敏度/受力範圍之觸覺感測器,搭配感測電路將訊號讀出,最後歸納出不同型態感測器的性能。


    In this study, a capacitive type CMOS-MEMS tactile-sensor containing a sensing gap filled with polymer. The fabrication process allows the changing of polymer material easily. Thus, the characteristics (sensing range, sensitivity) of the CMOS-MEMS tactile-sensor can be easily tuned by varying the polymer material. In application, the tactile-sensor and sensing circuits have been designed and implemented using (1) TSMC 0.35μm 2P4M CMOS process, and (2) in-house post-CMOS releasing and polymer-filling processes. Measurement results demonstrate the sensitivity and sensing range of CMOS-MEMS tactile-sensor are easily tuned by changing the polymer materials.

    致謝 i 中文摘要 iii Abstract iv 目 錄 v 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 3 1-3-1 CMOS MEMS後製程 3 1-3-2 觸覺感測器 4 1-4 研究目標 7 第二章 觸覺感測器原理與設計規劃 13 2-1 TSMC 0.35um 2P4M製程平台 13 2-2 電容式感測與靜電致動模型 14 2-2-1 觸覺感測器模型建立 14 2-2-2 靜電致動模型 17 2-3 感測訊號之雜訊考量 19 2-3-1 布朗雜訊 19 2-3-2 電性雜訊 20 2-4 感測結構設計考量 25 2-4-1 感測薄膜設計-間隙層為空氣 26 2-4-2 感測薄膜設計-間隙層為PDMS 27 2-5 電容式感測電路設計 29 2-5-1 電路架構 31 2-5-2 機電介面整合模擬 32 第三章 光罩佈局與後製程結果 49 3-1 光罩佈局規劃 49 3-1-1 觸覺感測器微結構佈局 49 3-1-2 感測電路佈局 51 3-2 CMOS-MEMS後製程結果 52 第四章 量測結果與討論 67 4-1 感測電路量測 67 4-2 表面機械與電氣特性量測結果 68 4-3 系統整合量測結果 69 第五章 結論與未來工作 82 5-1 結論 82 5-2 未來工作 83 參考文獻 87

    [1]G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk Micromachining of Silicon,” Proceedings of the IEEE, vol.86, pp.1536-1551, 1998.
    [2]J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface Micromachining for Microelectromechanical Systems,” Proceedings of the IEEE, vol.86, pp.1552-1574, 1998.
    [3]T. Muller, M. Brandl, O. Brand, and H. Baltes, “An Industrial CMOS Process Family Adapted for The Fabrication of Smart Silicon Sensors,” Sensors and Actuators A:Physical, vol.84, pp.126-133, 2000.
    [4]Texas Instruments, Inc., http://www.dlp.com/tech/
    [5]Analog Device, Inc., http://www.adi.com/
    [6]Akustica, Inc., http://www.akustica.com/
    [7]RF Micro Device, Inc., http://www.rfmd.com/
    [8]R. S. Payne, S. Sherman, S. Lewis, and R. T. Howe, “Surface micromachining : From Vision to Reality to Vision,” IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, San Francisco, CA, Feb., 1995, pp.164-165.
    [9]H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS – Present and Future,” IEEE Int. Conf. Micro Electro Mech. Syst., Las Vegas, NV, Jan., 2002, pp.459-466.
    [10]C. Wang, M.-H. Tsai, C.-M. Sun, and W. Fang, “A Novel CMOS Out-of-Plane Accelerometer with Fully Differential Gap-closing Capacitance Sensing Electrodes,” J. Micromech. Microeng., vol.17, pp.1275-1280, 2007.
    [11]G. K. Fedder, “CMOS-Based Sensors,” IEEE Sensors Conf., Irvine, CA, Oct., 2005, pp.125-128.
    [12]S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental Determination of The Maximum Post-Process Annealing Temperature for Standard CMOS Wafers,” IEEE Trans. Electron Devices, vol.48, pp.377-385, 2001.
    [13]J. Engel, J. Chen, and C. Liu, “Development of Polyimide Flexible Tactile Sensor Skin,” J. Micromech. Microeng., vol.13, pp.359-366, 2003.
    [14]M. Shikida, T. Shimizu, K. Sato, and K. Itoigawa, “Active Tactile Sensor for Detecting Contact Force and Hardness of An Object,” Sensors and Actuators A:Physical, vol.103, pp.213-218, 2003.
    [15]H. K. Lee, S. I. Chang, and E. Yoon, “A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment,” J. Microelectromech. Syst., vol.15, pp.1681-1685, 2006.
    [16]C. Liu, “Recent Developments in Polymer MEMS,” Advanced Materials, vol.19, pp.3783-3790, 2007.
    [17]J.-W. Lee, D.-J. Min, J. Kim, and W. Kim, “A 600-Dpi Capacitive Fingerprint Sensor Chip and Image-Synthesis Technique,” IEEE J. Solid-State Circuits, vol.34, pp.469-475, 1999.
    [18]B. Charlot, F. Parrain, N. Galy, S. Basrour, and B. Courtois, “A Sweeping Mode Integrated Fingerprint Sensor with 256 Tactile Microbeams,” J. Microelectromech. Syst., vol.13, pp.636-644, 2004.
    [19]N. Sato, S. Shigematsu, H. Morimura, M. Yano, K. Kudou, T. Kamei, and K. Machida, “Novel Surface Structure and Its Fabrication Process for MEMS Fingerprint Sensor,” IEEE Trans. Electron Devices, vol.52, pp.1026-1032, 2005.
    [20]C.-T. Ko, S.-H. Tseng, and M.S.-C. Lu, “A CMOS Micromachined Capacitive Tactile Sensor with High-Frequency Output,” J. Microelectromech. Syst., vol.15, pp.1708-1714, 2006.
    [21]How the iphone works, http://electronics.howstuffworks.com/iphone2.htm
    [22]K. Motoo, F. Arai, and T. Fukuda, “Piezoelectric Vibration-Type Tactile Sensor Using Elasticity and Viscosity Change of Structure” IEEE Sensors J., vol.7, pp.1044-1051, 2007.
    [23]C. Li, P.-M. Wu, S. Lee, A. Gorton, M. J. Schulz, and C. H. Ahn, “Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer,” J. Microelectromech. Syst., vol.17, pp.334-341, 2008.
    [24]T. Salo, T. Vancura, and H. Baltes, “CMOS-Sealed Membrane Capacitors for Medical Tactile Sensors,” J. Micromech. Microeng., vol.16, pp.769-778, 2006.
    [25]T. Salo, K.-U. Kirstein, T. Vancura, and H. Baltes, “CMOS-Based Tactile Microsensor for Medical Instrumentation,” IEEE Sensors J., vol.7, pp.258-265, 2007.
    [26]H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, “Normal and Shear Force Measurement Using a Flexible Polymer Tactile Sensor with Embedded Multiple Capacitors,” J. Microelectromech. Syst., vol.17, pp.934-942, 2008.
    [27]O. Brand, G. K. Fedder, H. Baltes, C. Hierold, J. G. Korvink and O. Tabata, CMOS-MEMS: Advanced Micro and Nanosystems. Weinheim, Germany: Wiley-VCH Verlag, 2005, vol.2.
    [28]C.-C. Wen and W. Fang, “Tuning The Sensing Range and Sensitivity of Three Axes Tactile Sensors Using The Polymer Composite Membrane,” Sensors and Actuators A:Physical, vol.145-146, pp.14-22, 2008.
    [29]H. Xiao, Introduction to semiconductor manufacturing technology. Prentice Hall, 2001.
    [30]IRTS Roadmap 2005, http://www.itrs.net/
    [31]G. K. Fedder, R. T. Howe, T.-J. K. Liu, and E. P. Quevy, “Technologies for Cofabricating MEMS and Electronics,” Proceedings of the IEEE, vol.96, pp.306-322, 2008.
    [32]X. Huang, I. Nausieda, D. W. Greve, M. M. Domach, and D. Nguyen, “Development of Active Matrix Biosensor Array for Cell Screening,” IEEE Sensors Conf., Vienna, Austria, Oct., 2004, pp.72-75.
    [33]W.-L. Huang, Z. Ren, Y.-W. Lin, H.-Y. Chen, J. Lahann, and C.T.-C. Nguyen, “Fully Monolithic CMOS Nickel Micromechanical Resonator Oscillator,” IEEE Int. Conf. Micro Electro Mech. Syst., Tucson, AZ, USA, Jan., 2008, pp.13-17.
    [34]J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, J. L. Lopez, F. Perez-Murano, J. Esteve, and N. Barniol, “Monolithic CMOS MEMS Oscillator Circuit for Sensing in The Attogram Range,” IEEE Electron Device Lett., vol.29, pp.146-148, 2008.
    [35]A. Jain and H. Xie, “A Single-Crystal Silicon Micromirror for Large Bi-Directional 2D Scanning Applications,” Sensors and Actuators A:Physical, vol.130-131, pp.454-460, 2006.
    [36]Y.-C. Cheng, C.-L. Dai, C.-Y. Lee, P.-H. Chen, and P.-Z. Chang, “A MEMS Micromirror Fabricated Using CMOS Post-Process,” Sensors and Actuators A:Physical, vol.120, pp.573-581, 2005.
    [37]Nation Chip Implementation Center, http://www.cic.org.tw/cic_v13/
    [38]N. Yazdi, H. Kulah, and K. Najafi, “Precision Readout Circuits for Capacitive Microaccelerometers” IEEE Conf. Sensors, Vienna, Austria, Oct., 2004, pp.28-31.
    [39]Stephen D. Senturia, Microsystem Design. Kluwer Academic Publishers, 2001.
    [40]M. S.-C Lu, “Parallel-Plate Micro Servo for Probe-Based Data Storage” Ph.D. dissertation, Dep. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2002.
    [41]R. R. Harrison, and C. Charles, “A Low-Power Low Noise CMOS Amplifier for Neural Recording Applications,” IEEE J. of Solid-State Circuits, vol.38, pp.958-965, 2003.
    [42]M. Tavakoli, and R. Sarpeshkar, “An Offset-Canceling Low-Noise Lock-In for Capacitive Sensing,” IEEE J. of Solid-State Circuits, vol.38, pp.244-253, 2003.
    [43]J. Wu, G. K. Fedder, and L. R. Carley, “A Low-Noise Low-Offset Capacitive Sensing Amplifier for A 50-□g/ Monolithic CMOS MEMS Accelerometer,” IEEE J. of Solid-State Circuits, vol.39, pp.722-730, 2004.
    [44]J. M. Tsai, and G. K. Fedder, “Mechanical Noise-limited CMOS-MEMS Accelerometer,” IEEE Int. Conf. Micro Electro Mech. Syst., Miami, FL, Jan., 2005, pp.630-633.
    [45]D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
    [46]R. J. Baker, CMOS Circuit Design, Layout and Simulation. 2nd ED, Oxford University Press: Wiley -Interscience, 2005.
    [47]G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder, “A Lateral Capacitive CMOS Accelerometer With Structural Curl Compensation,” IEEE Int. Conf. Micro Electro Mech. Syst., Orlando, FL, Jan., 1999, pp.606-611.
    [48]S. V. Iyer, H. Lakdawala, G. K. Fedder, and T. Mukherjee, “Macromodeling Temperature-Dependent Curl in CMOS Micromachined Beams,” Int. Conf. on Modeling and Simulation of Microsystems., Hilton Head, SC, USA, Mar., 2001.
    [49]S. Timoshenko, Theory of Plates and Shells. 2nd ED, McGraw-Hill Co, New York, NY, 1959.
    [50]M. Adam, T. Mohacsy, P. Jonas, C. Ducso, E. Vazsonyi, and I. Barsony, “CMOS Integrated Tactile Sensor Array by Porous Si Bulk Micromachining,” Sensors and Actuators A:Physical, vol.142, pp.192-195, 2008.
    [51]S. Timoshenko and J. N. Goodier, Theory of Elasticity. 3rd ED, McGraw-Hill Co, New York, NY, 1970.
    [52]CoventorWare, Coventor, Inc., http://www.coventor.com/
    [53]“Taiwan Semiconductor Manufacturing Company,” TSMC 0.35μm mixed signal 2P4M polyside 3.3V/5V spice model, ver. 2.7, 2007.
    [54]HSPICE, Synopsys, Inc., http://www.synopsys.com/home.aspx
    [55]H. Berney, M. Hill, D. Cotter, E. Hynes, M. O’Neill, and W. A. Lane, “Determination of The Effect of Processing Steps On The CMOS Compatibility of A Surface Micromachined Pressure Sensor,” J. Micromech. Microeng., vol.11, pp.402-408, 2001.
    [56]R. S. Jachowicz, Z. M. Azgin, “FET Pressure Sensor and Iterative Method for Modelling of The Device,” Sensors and Actuators A:Physical, vol.97-98, pp.369-378, 2002.
    [57]PDMS material property, http://web.mit.edu/6.777/www/matprops/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE