簡易檢索 / 詳目顯示

研究生: 孫達皇
Sun, Ta-Huang
論文名稱: 磊晶與非磊晶成長垂直磁異向性L10 FePt 合金薄膜之研究
Study of Epitaxial and Nonepitaxial Growth of L10 FePt Alloy Thin Films with Perpendicular Magnetic Anisotropy
指導教授: 陳建瑞
Chen, Jiann-Ruey
李三保
Lee, San-boh
口試委員: 郭博成
任盛源
陳勝吉
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 143
中文關鍵詞: 鐵鉑合金薄膜垂直磁異向性磊晶成長非磊晶成長
外文關鍵詞: FePt thin films, Perpendicular magnetic anisotropy, Epitaxial growth
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有高磁晶異向性常數之L10 FePt合金薄膜被認為具有成為下一代超高密度記錄媒體的主流材料潛力。欲使FePt薄膜應用於垂直磁記錄媒體,就必須獲得具有垂直磁異向之L10 FePt合金薄膜。然而,fct結構之最密堆積面為(111),因此FePt容易形成[111]從優取向使易磁化軸平行膜面。本研究探討磊晶及非磊晶成長機制對垂直磁異向性之FePt合金薄膜顯微結構與磁性質之影響。
    本研究第一部分是將不同厚度之單層Fe100-xPtx薄膜直接沈積在不同溫度之基板上,探討Pt含量、基板溫度及薄膜厚度對於單層FePt薄膜顯微結構和垂直磁性質之影響。研究發現在620 °C之基板溫度以臨場直流磁控共鍍30 nm厚之序化Fe54Pt46合金薄膜時,當薄膜厚度固定在30 nm時,以非磊晶機制可使單層FePt薄膜成長出很強的[001]從優取向,並呈現相當優異的垂直磁性質(垂直方向頑磁力達14.0 kOe、飽和磁化量為473 emu/cm3及垂直方向角形比為0.96)。
    本研究第二部分發現引入5 nm厚之NiO薄膜於單層FePt薄膜下方會使薄膜之垂直磁異向性產生劣化。增加NiO厚度至10 nm時,FePt薄膜之垂直方向頑磁力值更大幅下降至4.2 kOe。相較於NiO底層,引入10 nm厚之MgO底層其垂直方向頑磁力值則可達12.5 kOe。將MgO底層厚度降低至5 nm,FePt薄膜之垂直磁異向性可進一步提升,不僅垂直方向頑磁力值可高達13.6 kOe,其垂直方向角形比值更增加至1。
    本研究第三部分是利用高功率脈衝磁控濺鍍系統改變不同靶材尖峰功率密度將單層FePt合金薄膜直接沉積於康寧1737玻璃基板上,並將薄膜後退火熱處理於550 - 700 °C持溫30 min。研究發現將靶材尖峰功率密度從1196 W/cm2增加至3538 W/cm2,FePt合金薄膜之垂直磁異向性會被大幅提升。另一方面,將退火熱處理溫度降低至600 °C持溫30 min,10 nm厚之FePt合金薄膜呈現細小晶粒。其垂直方向頑磁力值、垂直方向角形比值、磁晶異向性常數及平均晶粒尺寸分別為6.5 kOe、0.99、3.1 × 107 erg/cm3及6.1 nm,具備應用於高密度垂直磁記錄媒體的潛力。


    The L10 FePt thin film with high magnetocrystalline anisotropy constant is considered as a potential candidate for the next-generation of high-density magnetic recording materials. To realize the application of the FePt films as perpendicular magnetic recording media, it is necessary to obtain L10 FePt film with a perpendicular magnetic anisotropy. However, the close-packed plane of fct structure is (111), the FePt film normally has (111) preferred orientation and the easy axis incline towards film plane. In this study, we investigate the effect of epitaxial and nonepitaxial growth mechanism on microstructures and magnetic properties of FePt films with perpendicular magnetic anisotropy.
    In the first topic, single-layered Fe100-xPtx films with various thicknesses were deposited directly on substrates at different temperatures, and the effects of Pt content, substrate temperature and film thickness on microstructures and perpendicular magnetic properties of FePt films were investigated. It was found that nonepitaxial single-layered Fe54Pt46 film with a thickness of 30 nm by in-situ depositing at 620 °C showed strong (001) preferred orientation and good perpendicular magnetic properties (perpendicular coercivity of 14.0 kOe, saturation magnetization of 473 emu/cm3 and perpendicular squareness of 0.96, respectively).
    In the second topic, the perpendicular magnetic anisotropy degrades when a 5-nm NiO film is introduced under this single-layered FePt film. Upon further increasing the thickness of the NiO film to 10 nm, the perpendicular coercivity of the FePt film decreases greatly to around 4.2 kOe. Compared to a NiO underlayer, the perpendicular coercivity of the FePt film remains above 12.5 kOe when a 10-nm MgO underlayer is introduced. Furthermore, when the thickness of the MgO underlayer is decreased to 5 nm, the perpendicular magnetic anisotropy of the FePt film is further enhanced. The perpendicular coercivity not only stays high at 13.6 kOe, but perpendicular squareness also increases significantly to 1.
    In the third topic, single-layered FePt films with various peak power density was deposited directly onto Corning 1737 glass substrate by high power impulse magnetron sputtering. The films were then post-annealed at 550 - 700 °C for 30 min. It is found that the perpendicular magnetic anisotropy of FePt films was enhanced greatly by increasing the peak power density from 1196 to 3538 W/cm2. On the other hand, the 10-nm FePt thin films with fine grain can be obtained as the post-annealing temperature was decreased to 600 °C for 30 min. Its perpendicular coercivity, perpendicular squareness, magnetocrystalline anisotropy constant and average grain size are 6.5 kOe, 0.99, 3.1 × 107 erg/cm3 and 6.1 nm respectively, which reveal its promising potential as perpendicular magnetic recording media for high-density recording.

    摘要 I Abstract II 誌謝 IV 目次 V 圖目次 VIII 表目次 XVI 第一章 前言 1 第二章 理論基礎與文獻回顧 3 2-1 理論基礎 3 2-1-1 磁記錄技術 3 2-1-2 高密度磁記錄媒體的要求 3 2-1-3 磁記錄材料的熱穩定性 4 2-1-4 FePt合金之結構 5 2-1-5 序化相FePt之熱力學反應 6 2-1-6 FePt合金的優點 7 2-1-7 FePt合金薄膜應用於磁記錄媒體的問題 8 2-1-8 L10 FePt晶粒尺寸的降低 9 2-1-9 垂直磁記錄的優點 10 2-1-10 目前垂直磁記錄技術之硬碟發展概況 11 2-2 文獻回顧 13 2-2-1 非磊晶成長垂直磁異向性之FePt合金薄膜 13 2-2-2 磊晶成長垂直磁異向性之FePt合金薄膜 16 2-2-3 臨場退火(In-situ annealing)製程之FePt合金薄膜 20 2-2-4 高功率脈衝磁控濺鍍(HIPIMS)系統相關研究 21 第三章 實驗流程及分析方法 38 3-1 實驗流程 38 3-1-1 DCMS非磊晶成長單層FePt合金薄膜實驗 38 3-1-2 DCMS磊晶成長FePt/NaCl-type雙層膜實驗 39 3-1-3 HIPIMS非磊晶成長單層FePt合金薄膜實驗 40 3-2 基板製備 41 3-2-1 基板選取 41 3-2-2 基板清洗 41 3-3 靶材選取 42 3-3-1 磁性層靶材 42 3-3-2 底層靶材 42 3-4 實驗裝置及薄膜製備 42 3-4-1 DCMS非磊晶成長單層FePt合金薄膜實驗裝置 42 3-4-2 DCMS磊晶成長FePt/NaCl-type雙層膜實驗裝置 44 3-4-3 HIPIMS非磊晶成長單層FePt合金薄膜實驗裝置 45 3-5 後退火熱處理 47 3-6 試片分析 47 3-6-1 薄膜化學組成分析 47 3-6-2 α-step膜厚測定 48 3-5-3 XRD結構分析 48 3-5-4 TEM微結構觀察 49 3-5-5 VSM磁性質量測 49 3-5-6 AFM及MFM 49 3-5-7 FE-SEM 50 3-5-8 薄膜應力分析 50 第四章 DCMS非磊晶成長單層FePt合金薄膜 63 4-1 研究動機 63 4-2 實驗方法 63 4-3 Pt含量對Fe100-xPtx薄膜影響之製作與研究 63 4-4 基板溫度對FePt薄膜影響之製作與研究 65 4-5膜厚對FePt薄膜影響之製作與研究 67 4-6 結論 69 第五章 DCMS磊晶成長FePt/NaCl-type雙層膜 78 5-1 研究動機 78 5-2 實驗方法 79 5-3 NiO底層厚度對FePt薄膜之磁異向性影響研究 80 5-4 MgO底層厚度對FePt薄膜之磁異向性影響研究 80 5-5 FePt/MgO及FePt/NiO雙層膜之顯微結構與垂直磁性質之比較 82 5-6 FePt (30 nm)/NiO (2 nm)雙層膜之製作與磁異向性研究 84 5-7 結論 84 第六章 HIPIMS非磊晶成長單層FePt合金薄膜 95 6-1 研究動機 95 6-2 實驗方法 97 6-3 靶材尖峰功率密度對HIPIMS鍍製之FePt薄膜影響研究 97 6-5 膜厚對HIPIMS鍍製之FePt薄膜影響研究 104 6-6 退火溫度對HIPIMS鍍製之FePt薄膜影響研究 105 6-7結論 108 第七章 結論 133 參考文獻 136

    [1] M. Yu, Y. Liu, and D. J. Sellmyer, J. Appl. Phys., vol.87, p.6959 (2000).
    [2] D. Weller, A. Moser, L. Folks, M. E. Eest, W. Lee, M. F. Toney, M. Schwickert, J. U. Thiele, and M. F. Doerner, IEEE Trans. Magn., vol.36, p.10 (2000).
    [3] T. Suzuki, N. Honda, and K. Ouchi, J. Appl. Phys., vol.85, p.4301 (1999).
    [4] K. Watanabe and H. Masumoto, Trans. Jpn. Inst. Met., vol.24, p.627 (1983).
    [5] S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science, vol.287, p.1989 (2000).
    [6] T. J. Klemmer, C. Liu, N. Shukla, X. W. Wu, D. Weller, M. Tanase, D. E. Laughlin, and W. A. Soffa, J. Magn. Magn. Mater., vol.266, p.79 (2003).
    [7] S. J. Greaves, K. K. Tham, and M. Miura, J. Appl. Phys., vol.91, p.8281, (2002).
    [8] D. Weller and A. Moser, IEEE Trans. Magn., vol.35, p.4423 (1999).
    [9] S. I. Iwasaki and Y. H. Nakamura, IEEE Trans. Magn., vol.13, p.1272 (1977).
    [10] S. Khizrroev and D. Litvinov, J. Appl. Phys., vol.95, p.4521 (2004).
    [11] M. H. Hong, K. Hono, and M. Watanabe, J. Appl. Phys., vol.84, p.4403 (1998).
    [12] H. S. Ko, A. Perumal, and S. C. Shin, Appl. Phys. Lett., vol.82, p.2311 (2003).
    [13] Y. F. Ding, J. S. Chen, E. Liu, C. J. Sun, and G. M. Chow, J. Appl. Phys., vol.97, p.10H303 (2005).
    [14] F. Casoli, L. Nasi, F. Albertini, S. Fabbrici, C. Bocchi, F. Germini, P. Luches, A. Rota, and S. Valeri, J. Appl. Phys., vol.103, p.043912 (2008).
    [15] E. Yang and D. E. Laughlin, J. Appl. Phys., vol.104, p.023904 (2008).
    [16] J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, J. Appl. Phys., vol.105, p.07B702 (2009).
    [17] A. Perumal, Y. K. Takahashi, and K. Hono, J. Appl. Phys., vol.105, p.07B732 (2009).
    [18] D. Ca´ceres, I. Vergara, and R. Gonza´lez, J. Appl. Phys., vol.93, p.4300 (2003).
    [19] S. C. Chen, P. C. Kuo, C. Y. Chou, and A. C. Sun, J. Appl. Phys., vol.97, p.10N107 (2005).
    [20] C. S. Kim, D. Choi, S. Chung, A. Wise, Y. Y. Dang, and M. H. Kryder, J. Appl. Phys., vol.112, p.023907 (2012).
    [21] S. B. Luitjens and A. M. A. Rijckaert, J. Magn. Magn. Mater., vol.193, p.17 (1999)
    [22] Rey Johnson, [website] http:// web.mac.com/ashoagland/HISTORY_3/ First_ Disk _File.html.
    [23] Seagate, [website] http://www.seagate.com/about/newsroom/press-releases/Seagate-ships-worlds-fastest-6TB-drive-enterprise-capacity-pr-master/
    [24] C. D. Mee and E. D. Daniel, “Magnetic recording Technology”, 2nd ed., New York : McGraw-Hill (1996).
    [25] R. L. Comstock, “Introduction to magnetism and magnetic recording”, New: John Wiley & Sons (1999).
    [26] M. Yu, Y. Liu, A. Moser, D. Weller, and D. J. Sellmyer, Appl. Phys. Lett., vol.75, p.3992 (1999).
    [27] B. D. Cullity, “Introduction to Magnetic Materials”, Massachusetts: Addison-Wesley (1972).
    [28] K. Watanabe, Mater. Trans. JIM., vol.32, p.292 (1991).
    [29] C. S. Barred, “Crystal Sturcture”, p.238 (1985).
    [30] P. Villas and L. D. Calvert, “Peason’s Hanbook of Crystalographic Data for Intermetallic Phase”, 4 ASM Information, (1991).
    [31] Y. N. Hsu, S. Jeong, D. E. Laughlin, and D. N. Lambeth, J. Appl. Phys., vol.89, p.7068 (2001).
    [32] D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, 2nd ed., New York : Chapman & Hall, (1992).
    [33] I. Panagiotopoulos, S. Stavroyiannis, D. Niarchos, J. A. Christodoulides, and G. C. Hadjipanayis, J. Appl. Phys., vol.87, p.4358 (2000).
    [34] Robert E. Reed-Hill, “Physical metallurgy principles”, third edition, (1992).
    [35] M. R. Visokay and R. Sinclair, Appl. Phys. Lett., vol.66, p.1692 (1995).
    [36] S. Stavroyiannis, I. Panagiotopoulos, D. Niarchos, J. A. Chistodoulides, Y. Yang, and G. C. Hadjipanayis, Appl. Phys. Lett., vol.73, p.3453 (1999).
    [37] V. Parasote, M. C. Cadeville, G. Garreau, and E. Beaurepaire, J. Magn. Magn. Mater., vol.198, p.375 (1999).
    [38] Y. K. Takahashi, T. Koyoma, M. Ohnuma, T. Ohkubo, and K. Hono, J. Appl. Phys., vol.95, p.2690 (2004).
    [39] M. Watanabe, T. Masumoto, D. H. Ping, and K. Hono, Appl. Phys. Lett., vol.76, p.3971 (2000).
    [40] N. Li, B. M. Lairson, and O. H. Kwon, J. Magn. Magn. Mater. vol.205, p.1 (1999).
    [41] H. Zeng, S. Sun, T. S. Vedantam, J. P. Liu, and Z. L. Wang, Appl. Phys. Lett., vol.80, p.2583 (2002).
    [42] P. C. Kuo S. C. Chen, Y. D. Yao, A. C. Sun, and C. C. Chiang, J. Appl. Phys., vol.91, p.8638 (2002).
    [43] T. Saito, O. Kitakami, and Y. Shimada, J. Magn. Magn. Mater., vol.239, p.310 (2002).
    [44] P. C. Kuo, Y. D. Yao, C. M. Kuo, and H. C. Wu, J. Appl. Phys., vol.87, p.6146 (2000).
    [45] C. M. Kuo, P. C. Kuo, W. C. Hsu, C. T. Li, and A. C. Sun, J. Magn. Magn. Mater., vol.209, p.100 (2000).
    [46] S. R. Lee, S. Yang, Y. K. Kim, and J. G. Na, Appl. Phys. Lett., vol.78, p.4001 (2001).
    [47] S. C. Chen, P. C. Kuo, A. C. Sun, C. T. Lie, and W. C. Hsu, Mater. Sci. Eng. B, vol.88, p.91 (2002).
    [48] J. P. Chu, T. Mahalingam, and S. F. Wang, J. Phys.: Condens. Metter, vol.16, p.561 (2004).
    [49] C. M. Kuo and P. C. Kuo, J. Appl. Phys., vol.87, p.419 (2000).
    [50] C. P. Luo, S. H. Liou, and D. J. Sellmyer, J. Appl. Phys., vol.87, p.6941 (2000).
    [51] J. A. Christodoulides, Y. Zhang, G. C. Hadjipanayis, and C. Fountzoulas, IEEE Trans. Magn., vol.36, p.2333 (2000).
    [52] J. A. Christodoulides, P. Farber, M. Daniil, H. Okumura, G. C. Hadjipanayis, G. C. Hadjipanayis, V. Skumryev, A. Simopoulos, and D. Weller, IEEE Trans. Magn., vol.37, p.1292 (2001).
    [53] S. C. Chen, P. C. Kuo, C. T. Lie, and J. T. Hua, J. Magn. Magn. Mater., vol.236, p.151 (2001).
    [54] S. Jeong, A. G. Roy, D. E. Laughlin, and M. E. McHenry, J. Appl. Phys., vol.91, p.8813 (2002).
    [55] S. Kang, J. W. Harrell, and D. E. Nikles, Nano Lett., vol.2, p.1033 (2002).
    [56] S. S. Kang, D. E. Nikles, and J. W. Harrell, J. Appl. Phys., vol.93, p.7178 (2003).
    [57] S. Kang, Z. Jia, D. E. Nikles, and J. W. Harrell, IEEE Trans. Magn., vol.39, p.2753 (2003).
    [58] H. Y. Wang, W. H. Mao, X. K. Ma, H. Y. Zhang, Y. B. Chen, Y. J. He, and E. Y. Jiang, J. Appl. Phys., vol.95, p.2564 (2004).
    [59] D. Ravelosona, C. Chappert, V. Mathet, and H. Bernas, Appl. Phys. Lett., vol.76, p.236 (2000).
    [60] D. Ravelosona, C. Chappert, H. Bernas, D. Halley, Y. Samson, and A. Marty, J. Appl. Phys., vol.91, p.8082 (2002).
    [61] H. Bernas, J. P. Attane´, K. H. Heinig, D. Halley, D. Ravelosona, A. Marty, P. Auric, C. Chappert, and Y. Samson, Phys. Rev. Lett., vol.91, p.077203-1 (2003).
    [62] C. H. Lai, S. H. Yang, and C. C. Chiang, Appl. Phys. Lett., vol.83, p.4550 (2003).
    [63] A. S. Hoagland, IEEE Trans. Magn., vol.39, p.1871 (2003).
    [64] S. I. Iwasaki, IEEE Trans. Magn., vol.16, p.71 (1980).
    [65] T. Suzuki, IEEE Trans. Magn., vol.20, p.675 (1984).
    [66] S. I. Iwasaki, K. Ouchi, and N. Honda, IEEE Trans. Magn., vol.16, p.1111 (1980).
    [67] S. I. Iwasaki and Y. Nakamura, IEEE Trans. Magn., vol.14, p.436 (1978).
    [68] S. Khizroev, R. M. Chomko, Y. Lin, K. Mountfield, M. H. Kryder, and D. Litvinov, presented at INTERMAG CB-07, (2000).
    [69] S. I. Iwasaki, IEEE Trans. Magn., vol.38, p.1609 (2002).
    [70] A. Kikukawa, K. Tanahashi, Y. Honda, Y. Hirayama, and M. Futamoto, IEEE Trans. Magn., vol.37, p.1602 (2001).
    [71] T. Hikosaka, F. Nakamura, S. Oikawa, A. Takeo, and Y. Tanaka, IEEE Trans. Magn., vol.37, p.1586 (2001).
    [72] Toshiba, [website] http://sdd.toshiba.com/main.aspx?Path=News/Archive06-07
    [73] Hitachi Global Storage Technologie, [website] http://www.hitachi.com/portal/site/en/menuitem.368c8bfe833dee8056fb11f0aac4f0a0/
    [74] Engadet [website] http://www.engadget.com/2007/06/25/ amsung-cant-stop-announcing-1tb-disks-barracuda-7200-11-and-e/
    [75] Seagate, [website] http://www.seagate.com/www/en-us/
    [76] Samsung, [website] http://www.samsung.com/global/business/hdd/
    [77] C. P. Luo, S. H. Liou, L. Gao, Y. Liu, and D. J. Sellmyer, Appl. Phys. Lett., vol.77, p.2225 (2000).
    [78] M. L. Yan, H. Zeng, N. Powers, and D. J. Sellmyer, J. Appl. Phys., vol.91, p.8471 (2002).
    [79] C. P. Luo and D. J. Sellmyer, U. S. Patent No. US2001/0036562 A1, Nov.1, (2001).
    [80] Y. Huang, H. Okumura, G. C. Hadjipanayis, and D. Weller, J. Magn. Magn. Mater., vol.242, p.317 (2002).
    [81] T. Yokota, M. L. Yan, Yingfan Xu, L. Gao, R. Zhang, L. Nicholl, L. Yuan, R. Skomski, D. J. Sellmyer, S. H. Liou, C. H. Lai, C. H. Yang, and S. H. Huang, J. Appl. Phys., vol.97, p.10H306 (2005).
    [82] Y. C. Wu, L. W. Wang, and C. H. Lai, Appl. Phys. Lett., vol.91, p.072502 (2007).
    [83] Y. C. Wu, L. W. Wang, and C. H. Lai, Appl. Phys. Lett., vol.93, p.242501 (2008).
    [84] L. W. Wang, Y. C. Wu, and C. H. Lai, J. Appl. Phys., vol.105, p.07A713 (2009).
    [85] Z. Li, H. Xie, X. Liu, J. Bai, F. Wei, D. Wei, S. Yoshimura, H. Saito, and X. Liu, J. Appl. Phys., vol.109, p.07D343 (2011).
    [86] S. N. Hsiao, S. H. Liu, S. K. Chen, F. T. Yuan, and H. Y. Lee, J. Appl. Phys., vol.111, p.07A702 (2012).
    [87] S. N. Hsiao, S. H. Liu, S. K. Chen, T. S. Chin, and H. Y. Lee, Appl. Phys. Lett., vol.100, p.261909 (2012).
    [88] L. W. Wang, W. C. Shih, Y. C. Wu, and C. H. Lai, Appl. Phys. Lett., vol.101, p.252403 (2012).
    [89] D. A. Gilbert, L. W. Wang, T. J. Klemmer, J. U. Thiele, C. H. Lai, and K. Liu, Appl. Phys. Lett., vol.102, p.132406 (2013).
    [90] C. Feng, M. Yang, K. Gong, X. Li, B. Li, Y. Jiang, and G. Yu, J. Appl. Phys., vol.115, p.023906 (2014).
    [91] R. Ohsugi, M. Kohda1, T. Seki, A. Ohtsu, M. Mizuguchi, K. Takanashi, and J. Nitta, Jpn. J. Appl. Phys., vol.51, p.02BM05 (2012).
    [92] H. Ho, E. Yang, D. E. Laughlin, and J. G. Zhu, Appl. Phys. Lett., vol.102, p.112411 (2013).
    [93] W. B. Cui, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, T. Shiroyama, and K. Hono, Solid State Commun., vol.182, p.17 (2014).
    [94] F. Albertini, L. Nasi, F. Casoli, S. Fabbrici, P. Luches, A. Rota, and S. Valeri, J. Magn. Magn. Mater., vol.316, p.e158 (2007).
    [95] Y. S. Yu, H. B. Li, W. L. Li, M. Liu, Y. M. Zhang, W. D. Fei, and D. J. Sellmyer, Thin Solid Films, vol.518, p.2171 (2010).
    [96] J. Zhang, Z. Sun, J. Sun, S. Kang, S. Yu, G. Han, S. Yan, L. Mei, and D. Li, Appl. Phys. Lett., vol.102, p.152407 (2013).
    [97] V. Sittinger, F. Ruske, W. Werner, C. Jacobs, B. Szyszka, and D. J. Christie, Thin Solid Films, vol.516, p.5847 (2008).
    [98] J. Alami, S. Bolz, and K. Sarakinos, J. Alloys Comp., vol.483, p.530 (2009).
    [99] B. Szyszka, P. Loebmann, A. Georg, C. May, and C. Elsaesser, Thin Solid Films, vol.518, p.3109 (2010).
    [100] G. T. West, P. J. Kelly, and J. W. Bradley, IEEE Trans. Plasma Sci., vol.38, p.3057 (2010).
    [101] A. P. Ehiasarian, A. Vetushka, Y. Aranda Gonzalvo, G. Sa´fra´n, L. Sze´kely, and P. B. Barna, J. Appl. Phys., vol.109, p.104314 (2011).
    [102] F. J. Jing, T. L. Yin, K. Yukimura, H. Sun, Y. X. Leng, and N. Huang, Vacuum, vol.86, p.2114 (2012).
    [103] A. N. Reed, M. A. Lange, C. Muratore, J. E. Bultman, J. G. Jones, and A. A. Voevodin, Surf. Coat. Technol., vol.206, p.3795 (2012).
    [104] J. G. Partridge, E. L. H. Mayes, N. L. McDougall, M. M. M. Bilek, and D. G. McCulloch, J. Phys. D: Appl. Phys., vol.46, p.165105 (2013).
    [105] S. Kment, Z. Hubicka, J. Krysa, J. Olejnicek, M. Cada, I. Gregora, M. Zlamal, M. Brunclikova, Z. Remes, N. Liu, L. Wang, R. Kirchgeorg, Ch. Y. Lee, and P. Schmuki, Catal. Today, vol.230, p.8 (2014).
    [106] E. Grochowski, Future Technology Challenges for NAND Flash and HDD Products, Flash Memory Summit, (2012).
    [107] 美國Corning公司之Corning 1737玻璃基板簡介資料。
    [108] G. G. Stoney, Proc. R. Soc. London, Ser. A, vol.82, p.172 (1909).
    [109] K. W. Lin, J. Y. Guo, C. Y. Liu, H. Ouyang, J. V. Lierop, N. N. Phuoc, and T. Suzuki, Phys. Stat. Sol. A, vol.204, p.3991 (2007).
    [110] B. W. Roberts, Acta. Metall., vol.2, p.597 (1954).
    [111] B. D. Cullity, Elements of X-ray Diffraction, second edition, Addison-Wesley, Massachusetts, (1978).
    [112] Y. Itoh, M. Takeuchi, A. Tsukamoto, K. Nakagawa, A. Itoh, and T. Katayama, Jpn. J. Appl. Phys., vol.41, p.L1066 (2002).
    [113] J. S. Kim and Y. M. Koo, Thin Solid Films, vol. 516, p.1147 (2008).
    [114] L. F. Yin, D. H. Wei, N. Lei, L. H. Zhou, C. S. Tian, G. S. Dong, X. F. Jin, L. P. Guo, Q. J. Jia, and R. Q. Wu, Phys. Rev. Lett., vol.97, p.067203 (2006).
    [115] H. Miyajima, K. Sato, and T. Mizoguchi, J. Appl. Phys., vol.47, p.4669 (1976).
    [116] J. S. Chen , Y. Xu, and J. P. Wang, J. Appl. Phys., vol.93, p.1661 (2003).
    [117]德國Huettinger公司之電源系統簡介資料。
    [118] K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Technol., vol.204, p.1661 (2010).
    [119] D. J. Christie, F. Tomasel, W. D. Sproul, and D. C. Carter, J. Vac. Sci. Technol. A, vol.22, p.1415 (2004).
    [120]吳錦裕、梁文龍、艾啟峰, 真空科技, 22卷, 第四期, 5 (2009).
    [121] D. V. Mozgrin, I. K. Fetisov, and G. V. Khodachenko, Plasma Phys. Rep., vol.21, p.401 (1995).
    [122] I. K. Fetisov, A. A. Filippov, G. V. Khodachenko, D. V. Mozgrin, and A. A. Pisarev, Vacuum, vol.53, p.133 (1999).
    [123] C. Christou and Z. H. Barber, J. Vac. Sci. Technol. A, vol.18, p.2897 (2000).
    [124] B. Chapman, Glow Discharge Processes, John Wiley & Sons (1981).
    [125] Y. P. Purandare, A. Ehiasarian, and P. Eh. Hovsepian, J. Vac. Sci. Technol. A, vol.26, p.288 (2008).
    [126] J. Paulitsch, M. Schenkel, A. Schintlmeister, H. Hutter, and P. H. Mayrhofer, Thin Solid Films, vol.518, p.5553 (2010).
    [127] E. Broitman, Zs. Czigány, G. Greczynski, J. Böhlmark, R. Cremer, and L. Hultman, Surf. Coat. Technol., vol.204, p.3349 (2010).
    [128] S. Konstantinidis, J. P. Dauchot, and M. Hecq, Thin Solid Films, vol.515, p.1182 (2006).
    [129] F. Ruske, A. Pflug, V. Sittinger, W. Werner, B. Szyszka, and D. J. Christie, Thin Solid Films, vol.516, p.4472 (2008).
    [130] V. Tiron, L. Sirghi, and G. Popa, Thin Solid Films, vol.520, p.4305 (2012).
    [131] S. Konstantinidis, A. Hemberg, J. P. Dauchot, and M. Hecq, J. Vac. Sci. Technol. B, vol.25, p.L19 (2007).
    [132] I. L. Velicu , M. Neagu , H. Chiriac, V. Tiron, and M. Dobromir, IEEE Trans. Magn., vol.48, p.1336 (2012).
    [133] M. Hála, R. Vernhes, O. Zabeida, E. Bousser, J. E. Klemberg-Sapieha, R. Sargent, and L. Martinu, Surf. Coat. Technol., vol.241, p.33 (2014).
    [134] M. M. M. Bilek and D. R. McKenzie, Surf. Coat. Technol., vol.200, p.4345 (2006).
    [135] C. V. Thompson and R. Carel, J. Mech. Phys. Solids, vol.44, p.657 (1996).
    [136] P. Rasmussen, X. Rui, and J. E. Shield, Appl. Phys. Lett., vol.86, p.191915 (2005).
    [137] T. Ichitsubo, S. Tojo, T. Uchihara, and E. Matsubara, A. Fujita, K. Takahashi, and K. Watanabe, Phys. Rev. B, vol.77, p.094114 (2008).
    [138] H. Dang, L. Liu, L. Hao, T. Jin, M. Liu, J. Cao, J. Bai, Y. Wang, and F. Wei, J. Appl. Phys., vol.115, p.17B711 (2014).
    [139] H. H. Li, K. F. Dong, G. M. Chow, and J. S. Chen, IEEE Trans. Magn., vol.49, p.3299 (2013).
    [140] G. Li, C. W. Leung, Y. C. Chen, K. W. Lin, A. C. Sun, J. H. Hsu, and P. W. T. Pong, Microelectron. Eng., vol.110, p.241 (2013).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE