研究生: |
劉浩翔 Liu, Hao-Xiang |
---|---|
論文名稱: |
可撓曲嵌入式應變感測器的設計與三維複合結構列印 Design and 3D Printing of Flexible Conductive Composites as Embedded Sensors |
指導教授: |
蘇育全
Su, Yu-Chuan |
口試委員: |
陳宗麟
Chen, Tsung-Lin 陳紹文 Chen, Shao-Wen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 三維列印 、複合材料 、導電高分子 、電阻式應變感測器 |
外文關鍵詞: | 3D-printing, Composite material, Conductive polymer, Resistive strain sensor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用柔軟且可以高度拉伸的導電材料和金屬複合製成可穿戴的智能電子設備。例如,可撓曲電阻式感測器對於包括人體運動檢測,健康監測和軟機器人在內的新興應用至關重要。然而,軟導電結構的製程通常是昂貴且費時的,並且其結構的感測性能通常較差。本實驗目的是研發出更快速的製程,以製造出兼具柔韌性和導電性的圖案化導電複合材料。更具體地說,本實驗採用了DLP(數字光處理)立體光刻技術可根據所需選擇性地固化銀和聚吡咯複合膜,並為軟機器人構建集成的應變傳感器。
使用1920×1080像素的高分辨率微鏡陣列投光器動態投影出復合銀和聚吡咯結構的光圖案化圖像。作為應變傳感器的軟導電結構,其快速製造方案基於(1)
光可圖案化樹脂的配方,(2)高度可拉伸的彈性體結構的形成,(3)動態曝光的曝光以及(4)集成和協同作用。首先,自由基光起始劑產生光裂解反應將銀離子還原為均勻沉積在基材上的納米粒子。為了加速銀線和電極的沉積,將具有圖案化納米粒子基板浸入顯影劑中,讓顯影劑中的銀粒子快速還原成長為連續結構。同時,吡咯可以用陽離子光起始劑氧化並在彈性體結構上聚合成所需的聚吡咯圖案。另外,包含硝酸銀可加速氧化並有效地增加沉積圖案的電導率。另外,包含硝酸銀可加速氧化並放大沉積圖案的電導率。而本實驗製造了嵌入式和高度可拉伸式的兩種應變感測器。並發現銀-聚吡咯複合結構的電阻率與其伸長成比例地增加。實現了具有規律性可預期的感測性能並可以透過光照圖案化的導電結構的快速製造方案。
Soft and stretchable conductive materials are highly demanded for the implement of integrated, wearable, and intelligent electronic devices. For example, resistive-type flexible sensors are critical for emerging applications including human motion detection, health monitoring, and soft robotics. However, the manufacturing of soft conductive structures is usually costly and time-consuming, and the sensing properties of resulting structures are normally poor. The goals of this thesis is to develop rapid manufacturing schemes that realize photo-patternable conductive composites with desirable flexibility and electrical conductivity. More specifically, DLP (digital light processing) stereolithography is employed to selectively cure silver and poly-pyrrole composite film on demand, and to build integrated strain sensors for soft robotics.
A high-resolution light projector based on a 1920×1080 micromirror array, is used to dynamically generate the images for photo-patterning of composite silver and poly-pyrrole structures. The rapid manufacturing schemes for soft conductive structures functioning as strain sensors are based on (1) formulation of photo-patternable resins, (2) forming of highly stretchable elastomeric structures, (3) dynamically evolving light exposure, and (4) integration and synergy. First of all, photo-cleavage of free-radical photoinitiators reduces silver ions into nanoparticles that evenly deposit on a substrate. To accelerate the deposition of silver wires and electrodes, the substrate with patterned nanoparticles is immersed in a developer to rapidly grow separate silver particles into a continuous structure. Meanwhile, pyrrole can be oxidized with cationic photo-initiators and polymerized into desired polypyrrole patterns on an elastomeric structures. In addition, the inclusion of silver nitrate accelerates the oxidation and amplifies electrical conductivity of deposited patterns. In the prototype demonstration, embedded and highly stretchable strain sensors are fabricated. It is found that the resistivity of a silver-polypyrrole composite structure increases proportionally with its elongation. As such, rapid manufacturing schemes that realize photo-patternable conductive structures with desirable sensing performance can potentially be accomplished.
Rajan, Krishna, et al. "Silver nanoparticle ink technology: state of the art." Nanotechnology, science and applications 9 (2016): 1.
Wikipedia contributors. "3D printing." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 22 Aug. 2020. Web. 24 Aug. 2020.
“https://ir.nctu.edu.tw/bitstream/11536/79241/8/552308.pdf” .
Amjadi, Morteza, et al. "Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review." Advanced Functional Materials 26.11 (2016): 1678-1698.
“https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&cat2=10&id=0000544013_HXO1R28S0JN4EX41G4XXI,”
Razza, Nicolò, et al. "UV‐Printable and Flexible Humidity Sensors Based on Conducting/Insulating Semi‐Interpenetrated Polymer Networks." Macromolecular Materials and Engineering 302.10 (2017): 1700161.
Scott, Robert WJ, Orla M. Wilson, and Richard M. Crooks. "Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles." (2005): 692-704.
McClements, David Julian, and Hang Xiao. "Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles." npj Science of Food 1.1 (2017): 1-13.
Zhang, Xi-Feng, et al. "Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches." International journal of molecular sciences 17.9 (2016): 1534.
Dastafkan, Kamran, et al. "Mechanism and behavior of silver nanoparticles in aqueous medium as adsorbent." Talanta 144 (2015): 1377-1386.
Jradi, Safi, et al. "Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction." Nanotechnology 21.9 (2010): 095605.
Woehl, Taylor J., et al. "Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth." ACS nano 6.10 (2012): 8599-8610.
Balan, Lavinia, Jean-Pierre Malval, and Daniel-Joseph Lougnot. "In situ photochemically assisted synthesis of silver nanoparticles in polymer matrixes." Silver nanoparticles (2010): 79-92.
Zaier, Mohamed, et al. "Generating highly reflective and conductive metal layers through a light-assisted synthesis and assembling of silver nanoparticles in a polymer matrix." Scientific reports 7.1 (2017): 1-10.
Mallick, Kaushik, Mike J. Witcomb, and Mike S. Scurrell. "In situ synthesis of copper nanoparticles and poly (o-toluidine): A metal–polymer composite material." European polymer journal 42.3 (2006): 670-675.
Gentry, Stuart T., Stephen J. Fredericks, and Robert Krchnavek. "Controlled particle growth of silver sols through the use of hydroquinone as a selective reducing agent." Langmuir 25.5 (2009): 2613-2621.
ResearchMFC,“https://www.researchmfg.com/2016/08/tg-glass-transition-temperature/”
Bi, Xiangdong, and Aiye Liang. "In Situ‐Forming Cross‐linking Hydrogel Systems: Chemistry and Biomedical Applications." Emerging Concepts in Analysis and Applications of Hydrogels 86 (2016): 541-547.
Deng, Yuhao, et al. "Urethane acrylate‐based photosensitive resin for three‐dimensional printing of stereolithographic elastomer." Journal of Applied Polymer Science (2020): 49294.
“共軛性導電高分子材料技術簡介,” 9 12 2010.
Yoneyama, Hiroshi, and Masahiro Kitayama. "Photocatalytic deposition of light-localized polypyrrole film pattern on n-type silicon wafers." Chemistry Letters 15.5 (1986): 657-660.
Ramanavicius, A., et al. "Conducting and electrochemically generated polymers in sensor design (mini review)." Procedia Engineering 47 (2012): 825-828.
Nair, Jijeesh R., et al. "Novel self-directed dual surface metallisation via UV-curing technique for flexible polymeric capacitors." Organic Electronics 11.11 (2010): 1802-1808.
Truby, Ryan L., et al. "Soft robotic fingers with embedded ionogel sensors and discrete actuation modes for somatosensitive manipulation." 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2019.
Jiang, X. C., et al. "Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach." Nanoscale Res Lett 6.1 (2011): 32.