簡易檢索 / 詳目顯示

研究生: 許展嘉
論文名稱: 利用核磁共振技術研究人類鈣離子結合 S100A12 蛋白質水溶液結構以及其與 Siah-1 作用蛋白質(SIP)中序列189-219 之間交互作用的探討
NMR Structure of Calcium-bound Human S100A12 Protein and its Interaction with Sequence 189-219 of Siah-1 interacting Protein(SIP)
指導教授: 余靖
口試委員: 莊偉哲
陳金榜
余靖
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 121
中文關鍵詞: 核磁共振結構計算蛋白質水溶液結構S100A12蛋白質
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生物系統中的許多蛋白質有其獨特的作用區域,可與特定的分子結合,決定蛋白質的活性與功能。這些作用的分子(統稱為ligands)包含蛋白、胜肽、金屬離子及藥物等等…。本篇論文進行的研究案例,即是蛋白質與胜肽之交互作用。
    人類S100A12蛋白是S100蛋白質家族之一份子,在水溶液狀態下為一同質雙聚體蛋白,可藉由與鈣離子結合改變其構形,進一步與目標蛋白交互作用;SIP為一種Siah-1作用蛋白,與配體結合後,可以調控細胞訊息傳遞,以進行泛素化水解的工作。在本篇論文中,藉由兩種蛋白質間的交互反應,探討其形成複合物之後的結構特性。
    我們利用二維1H-15N HSQC滴定實驗找出S100A12與SIP可能的結合位置,並且藉由螢光實驗以及圓二色光譜儀,探討兩者間的交互作用。搭配三維核磁共振實驗HNCA, HN(CO)CA, HCCH-TOCSY以及HCCH-COSY等來完成蛋白質的化學位移判定,並利用實驗所得的距離、雙面角、氫鍵限制條件經由軟體計算,解出人類鈣離子結合S100A12水溶液結構,以及S100A12與SIP作用後的複合物水溶液結構。從實驗結果歸納出,S100A12與SIP以1:1之比例結合形成複合物,此研究幫助我們更了解S100家族與SIP反應情形。然而,後續仍需更進一步研究,以探討此反應是否與實際生理情形相關。


    Many proteins in biological systems have specific binding sites for certain molecules, and these binding events are critical to the protein’s activity and function. These molecules, often called "ligands" include proteins, peptides, metals and drugs and so on. In this thesis, the case which we study is protein-peptide interactions.
    Human S100A12 protein belongs to S100 protein family which shows a homodimer in solution. After binding with calcium, S100A12 undergoes a calcium-induced conformational change and interacts with target protein. SIP is one kind of Siah-1 interacting protein. It controls cellular signal transmitting and ubiquitination via interacting with several ligands. We study the interaction between S100A12 and SIP, and we’d like to realize the complex’s characteristics.
    According to 1H-15N HSQC titration, the binding sites between S100A12 and SIP can be found. Furthermore, through fluorescence and circular dichroism spectrums to study the protein-protein interaction, and chemical shift assignments were made from HNCA, HN(CO)CA, HCCH-TOCST and HCCH-COSY, etc. The solution structure of human calcium bound S100A12 and complex-form S100A12 were determined by ARIA/CNS software, using the experimental restraints such as distance, dihedral angle, hydrogen bond. We make a conclusion that binding ratio between S100A12 and SIP is 1:1 to form the complex. However, Further studies would be necessary to characterize this interaction in more detail and to investigate if this interaction is physiologically relevant.

    摘要 ii 謝誌 v 目錄 vi 圖目錄 ix 表目錄 xi 縮寫表 xii 第一章 介紹 1 1.1 生物核磁共振技術介紹 1 1.1.1 核磁共振光譜蛋白質樣品製備 2 1.1.2 蛋白質分子的骨架循序判定 3 1.1.3 蛋白質分子的支鏈循序判定 5 1.2 計算蛋白質結構之限制條件 ..7 1.2.1 距離限制條件(NOE distance constraints) 7 1.2.2 雙面角限制條件(Dihedral angle constraints) 8 1.2.2 氫鍵限制條件(Hydrogen bond constraints) 8 1.3 ARIA/CNS結構計算 9 1.4 S100蛋白質家族之結構與其特性 12 1.5 S100A12蛋白質之結構與其特性 13 1.6 SIP之結構與其特性 16 1.7 S100蛋白質與SIP交互作用產生之結構及其生理功能 18 1.8 實驗動機 19 第二章 材料與方法 21 2.1 人類S100A12蛋白質基因的取得 21 2.1.1 S100A12蛋白質的表現 21 2.1.2 人類S100A12蛋白質的純化 23 2.1.3 人類S100A12蛋白質之濃度測試 25 2.2 SIP基因取得及表現 26 2.2.1 SIP之純化 27 2.2.2 SIP之濃度測試 29 2.3 人類S100A12與SIP基本性質的鑑定 29 2.3.1 人類S100A12與SIP質量測定 29 2.3.2 二維核磁共振實驗 30 2.3.3 螢光放射光譜(Fluorescence spectrum) 31 2.3.4 圓二色光譜(Circular Dichroism spectrum) 33 2.3.5 人類S100A12與SIP分子的三維核磁共振實驗 36 2.4 人類Ca2+-S100A12蛋白質分子的結構計算 38 2.4.1 Isotope Filter NMR 38 2.4.2 ARIA/CNS 39 第三章 結果與討論 40 3.1 人類S100A12蛋白質在大腸桿菌的表現 40 3.1.1 異丙基硫化半乳糖(IPTG)對大腸桿菌之誘導作用 40 3.1.2 大量表現人類S100A12蛋白質 42 3.1.3 人類S100A12蛋白質的純化 43 3.2 SIP的純化 45 3.3 人類S100A12及SIP基本性質之測定 47 3.3.1 人類S100A12與SIP的分子量鑑定 47 3.3.2 蛋白質二維1H-15N HSQC光譜 49 3.3.2.1 人類Ca2+-S100A12蛋白質1H-15N HSQC光譜 49 3.3.2.2 SIP之1H-15N HSQC光譜 50 3.4 人類Ca2+-S100A12蛋白質分子的三維核磁共振實驗 50 3.4.1 人類Ca2+-S100A12蛋白質分子的骨架循序判定 50 3.4.1.1 HNCA與HN(CO)CA 51 3.4.1.2 HNCACB與CBCA(CO)NH 52 3.4.1.3 HNCO 53 3.4.2 人類Ca2+-S100A12蛋白質的支鏈循序判定 53 3.4.2.1 HBHA(CO)NH 54 3.4.2.2 HCCH-TOCSY與HCCH-COSY 55 3.4.3 人類Ca2+-S100A12化學位移完成度 55 3.5 人類Ca2+-S100A12蛋白質分子的結構計算 56 3.5.1 雙面角限制條件 56 3.5.2 氫鍵限制條件 58 3.5.3 距離限制條件 59 3.5.4 ARIA/CNS軟體計算人類Ca2+-S100A12蛋白質的結構 61 3.6 人類Ca2+-S100A12蛋白質與SIP形成複合物時之結構 65 3.6.1 人類Ca2+-S100A12複合物型態之化學位移完成度 65 3.6.2 人類Ca2+-S100A12複合物型態之結構計算 66 3.6.3 人類S100A12蛋白質與已發表結構的比較 73 3.6.4 人類Ca2+-S100A12蛋白質自由型態與複合物型態之結構比較 75 3.7 自由型態以及複合物型態SIP分子的結構計算 76 3.8 人類Ca2+-S100A12與SIP之間的交互作用探討 78 3.8.1 HSQC滴定實驗 78 3.8.1.1 人類Ca2+-S100A12蛋白質的結合位置 79 3.8.1.2 SIP的結合位置 82 3.8.2 螢光實驗 83 3.8.3 分析級分子篩層析(ASEC) 86 3.8.4 圓二色光譜儀(CD) 89 3.9 HADDOCK(High Ambiguity Driven Docking) 90 結論 94 參考文獻 95 附錄 99

    [1] B. W. Schäfer, C. W. Heizmann, Trends in Biochemical Sciences 1996, 21, 134-140.
    [2] aR. Donato, Microscopy research and technique 2003, 60, 540-551; bC. W. Heizmann, J. A. Cox, BioMetals 1998, 11, 383-397; cC. W. Heizmann, G. Fritz, B. W. Schafer, Frontiers in bioscience : a journal and virtual library 2002, 7, d1356-1368.
    [3] T. Ostendorp, E. Leclerc, A. Galichet, M. Koch, N. Demling, B. Weigle, C. W. Heizmann, P. M. H. Kroneck, G. Fritz, EMBO J 2007, 26, 3868-3878.
    [4] D. Kiryushko, V. Novitskaya, V. Soroka, J. Klingelhofer, E. Lukanidin, V. Berezin, E. Bock, Molecular and Cellular Biology 2006, 26, 3625-3638.
    [5] N. Leukert, T. Vogl, K. Strupat, R. Reichelt, C. Sorg, J. Roth, Journal of Molecular Biology 2006, 359, 961-972.
    [6] O. V. Moroz, G. G. Dodson, K. S. Wilson, E. Lukanidin, I. B. Bronstein, Microscopy research and technique 2003, 60, 581-592.
    [7] aN. LÜGering, R. Stoll, K. W. Schmid, T. Kucharzik, H. Stein, G. Burmeister, C. Sorg, W. Domschke, European Journal of Clinical Investigation 1995, 25, 659-664; bR. R. Rustandi, D. M. Baldisseri, K. G. Inman, P. Nizner, S. M. Hamilton, A. Landar, A. Landar, D. B. Zimmer, D. J. Weber, Biochemistry 2001, 41, 788-796; cS. Tarabykina, M. Kriajevska, D. J. Scott, T. J. Hill, D. Lafitte, P. J. Derrick, G. G. Dodson, E. Lukanidin, I. Bronstein, FEBS Letters 2000, 475, 187-191.
    [8] Donato, Rosario. Microscopy research and technique 2003, 60, 540-551.
    [9] F. Guignard, J. Mauel, M. Markert, Biochemistry 1995, 309, 395–401.
    [10] E.C. Ilg, H. Troxler, D.M. Burgisser, T. Kuster, M. Markert, F. Guignard, P.Hunziker, N. Birchler, C.W. Heizmann, Biochem. Biophys. Res. Commun. 1996, 225, 146–150.
    [11] K. Yamashita, Y. Oyama, T. Shishibori, O. Matsushita, A. Okabe, R. Kobayashi,
    Protein Expression Purif. 1999, 16, 47–52
    [12] E.C. Dell'Angelica, C.H. Schleicher, J.A. Santome, Journal of Biological Chemistry 1994, 269, 28929–28936.
    [13] O.V. Moroz, A.A. Antson, E.J. Dodson, H.J. Burrell, S.J. Grist, R.M. Lloyd, N.J. Maitland, G.G. Dodson, K.S. Wilson, E. Lukanidin, I.B. Bronstein, Acta Crystallogr. D. Biol. Crystallogr. 2002, 58, 407–413.
    [14] O.V. Moroz, A.A. Antson, S.J. Grist, N.J. Maitland, G.G. Dodson, K.S. Wilson, E. Lukanidin, I.B. Bronstein, Acta Crystallogr. D. Biol. Crystallogr. 2003, 59,
    859–867.
    [15] O V Moroz, A A Antson, G N Murshudov, N J Maitland, G G Dodson, K S Wilson, J Skibshoj, E M Lukanidin and I B Bronshtein, Acta Crystallogr. D. Biol. Crystallogr. 2001, 57, 20-29.
    [16] Moroz, O.V., Blagova, E.V., Wilkinson, A.J., Wilson, K.S., Bronstein, I.B., Journal of Biological Chemistry 2009, 391, 536-551.
    [17] Rezvanpour A, Santamaria-Kisiel L, Shaw GS., Journal of Biological Chemistry 2011, 286(46), 40174-40183.
    [18] Takashi Hatakeyama1, Miki Okada1, Seiko Shimamoto1, Yasuo Kubota2 and Ryoji Kobayashi, European Journal of Biochemistry 2004, 271, 3765–3775
    [19] Hofmann, M.A., et al., Cell 1999, 97(7), 889-901.
    [20] Gabriela Schneider, Anna Filipek, Amino Acids 2011, 41, 773–780.
    [21] Shibani Bhattacharya, Young-Tae Lee, Wojciech Michowski,Beata Jastrzebska,
    Anna Filipek,Jacek Kuznicki,and Walter J. Chazin, Biochemistry 2005, 44,
    9462 – 9471.
    [22] Anna Filipek, Beata Jastrzebska, Marcin Nowotny, and Jacek Kuznicki, Journal of Biological Chemistry 2002, 277, 28848–28852.
    [23] Young-Tae Lee, Yoana N. Dimitrova, Gabriela Schneider, Whitney B. Ridenour Shibani Bhattacharya, Sarah E. Soss, Richard M. Caprioli, Anna Filipek, andWalter J. Chazin, Biochemistry 2008, 47(41), 10921–10932
    [24] Xiaoxuan Ning., Shiren Sun, Kun Zhang, Jie Liang, Yucai Chuai, Yuan Li, Xiaoming Wang, PLoS One 2012, 7(1), 1-8.
    [25] Shu-ichi Matsuzawa and John C. Reed, Molecular Cell 2001, 7, 915–926.
    [26] D. Kögel, M. Peters, H. G. König, S. M. A. Hashemi, N. T. Bui, V. Arolt, M. Rothermundt, J. H. M. Prehn, Neuroscience 2004, 127, 913-920.
    [27] Bertini I, Borsi V, Cerofolini L, Das Gupta S, Fragai M, Luchinat C. Journal of Biological Inorganic Chemistry 2012, 18(2), 183-194.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE