簡易檢索 / 詳目顯示

研究生: 魏子婕
Wei, Zih Jie
論文名稱: 濾片技術結合類神經網路進行Tc-99m/I-123雙同位素造影之交疊修正
Crosstalk Compensation for Simultaneous Tc-99m/I-123 dual-isotope SPECT imaging by Filtering Technique and Artificial Neural Network
指導教授: 莊克士
Chuang, Keh Shih
林信宏
Lin, Hsin Hon
口試委員: 蕭穎聰
Hsiao, Ing Tsung
詹美齡
Jan, Meei Ling
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 66
中文關鍵詞: 雙同位素同時造影交疊修正濾片類神經網路
外文關鍵詞: dual isotope simultaneous acquisition, crosstalk compensation, filter, artificial neural network
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用單光子斷層掃描 (SPECT)進行Tc-99m/I-123雙同位素造影,可以在同時間觀察兩種示蹤劑於體內分布的情形,且兩張影像於空間上能完全對位。然而,要分開這兩種同位素並不容易,因為Tc-99m與I-123的能量非常接近,會有嚴重的交疊污染,使影像出現假影。使用類神經網路方法進行交疊修正具有很高的正確性,但需開很多個能窗 (>8),於臨床上不易執行。本研究利用濾片提供光子衰減差異的資訊,結合類神經網路方法進行雙同位素造影的交疊修正。此方法僅需開四個能窗即可執行。
    本方法使用0.2 mm的金濾片作為分開Tc-99m與I-123光子之工具。濾片裝置於準直儀前方,每個角度都必須收集無、有濾片之投影資訊。我們使用的類神經網路架構總共分為三層:第一層為輸入層,共有8個輸入值,為四個能窗無、有濾片之投影數據;第二層為隱藏層,包含10個節點;第三層為輸出層,有4個輸出節點,為Tc-99m與I-123光子在無、有濾片之掃描中真實事件的分率。根據輸出值,即可獲得交疊與散射修正後的Tc-99m與I-123之投影。我們使用Gate/MPHG蒙地卡羅程式模擬three-rod假體與NCAT假體的雙同位素造影,以驗證本研究方法。
    根據影像量化結果,我們的方法能使Tc-99m/I-123雙同位素影像回復至接近無交疊、散射污染的單同位素造影影像。和其它散射修正法比較,我們提出的方法遠優於不對稱能窗法,且近似於26能窗類神經網路法的結果。使用濾片結合類神經網路,能有效處理雙同位素造影中的交疊污染,且僅需4個能窗即可執行。


    Simultaneous Tc-99m/I-123 dual-isotope SPECT imaging allows assessment of two physiological functions under identical conditions, without any image registration. However, the separation of these radionuclides is difficult, because their energy is close. Images can be severely distorted due to crosstalk. Use of an artificial neural network (ANN) has been previously shown to be an effective tool in compensating crosstalk and scatter. Conventional ANN techniques require a large number of energy windows (>8); however, such a capability is not available in most clinical SPECT systems. In this study, we proposed a filter method to improve the ANN techniques with only 4 energy windows.
    In this work, we chose 0.2 mm gold filter to separate Tc-99m and I-123, based on the attenuation difference of the gamma of each isotope. The filter is placed over the collimator. We designed an ANN with 8 input, 10 nodes in the hidden layer, and four nodes in the output layer. The inputs were count ratios in four energy windows from scans with and w/o filter. The outputs layer provided the ratio of estimated primary to total photons for Tc-99m and I-123, w/ and w/o filter. The outputs of the ANN are then combined to form two primary data with crosstalk and scatter corrected each for the Tc-99m and I-123. A GATE/MPHG Monte Carlo code is used for the DISA SPECT simulation. In this work, a three-rod phantom and a NCAT phantom were used to validate the proposed method.
    The results showed that quantitative recovery from dual isotope image was comparable to that from single-isotope imaging. Compared to images using other crosstalk compensation methods, our results were much better than that of asymmetric window method and closed to the results obtained from conventional ANN technique. Using the filter method incorporated with ANN, crosstalk was successfully compensated and only 4 energy window were needed.

    中文摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 viii 表目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 核子醫學造影 (Nuclear Medicine Imaging) 4 2.1.1 核子醫學基礎物理 5 2.1.2 單光子斷層掃描 (Single Photon Emission Computed Tomography, SPECT) 8 2.2 雙同位素同時造影 9 2.2.1 雙同位素同時造影之應用 9 2.2.2 能譜交疊 (crosstalk) 12 2.2.3 雙同位素交疊修正法 13 2.3 散射修正法 16 2.3.1 三能窗法 (Triple Energy Window, TEW) 16 2.3.2 類神經網路法 17 2.4 類神經網路 17 2.4.1 類神經網路簡介 18 2.4.2 類神經網路的運作原理 21 2.4.3 倒傳遞神經網路 (Back-propagation network) 22 第三章 材料與方法 26 3.1 濾片結合類神經網路方法之雙同位素交疊修正 26 3.2 以解析方法最佳化濾片厚度 30 3.3 蒙地卡羅模擬 (Monte Carlo Simulation, MCS) 32 3.3.1 單光子斷層造影系統 34 3.3.2 雙同位素同時造影之模擬 36 3.4 假體模擬 36 3.4.1 訓練假體 36 3.4.2 測試假體 37 3.5 不同雙同位素交疊修正法之比較 39 3.5.1 不對稱能窗法(AW) 40 3.5.2 一般類神經網路方法:26能窗類神經網路法(ANN26) 40 3.6 影像重建 41 3.7 雙同位素影像評估 43 第四章 結果 46 4.1 濾片厚度最佳化 46 4.2 Three-rod假體 49 4.2.1 雙同位素交疊污染與無、有濾片之掃描下之光子組成分析 49 4.2.2 雙同位素影像量化分析 50 4.3 NCAT假體 55 第五章 討論 57 5.1 不同交疊修正法應用於Tc-99m/I-123雙同位素造影之結果探討 57 5.1.1 Three-rod 假體 57 5.1.2 NCAT假體 59 5.2 濾片技術結合類神經網路之交疊修正法的限制 60 5.3 濾片技術結合類神經網路之交疊修正法的未來應用 61 第六章 結論 62 第七章 參考文獻 63

    Bai J, Hashimoto J, Ogawa K, Nakahara T, Suzuki T and Kubo A 2007 Scatter correction based on an artificial neural network for 99mTc and 123I dual-isotope SPECT in myocardial and brain imaging Annals of Nuclear Medicine 21 25-32

    Baum K G and Helguera M 2007 Execution of the SimSET Monte Carlo PET/SPECT simulator in the condor distributed computing environment Journal of Digital Imaging 20 72-82

    Berman D S, Kang X, Tamarappoo B, Wolak A, Hayes S W, Nakazato R, Thomson L E, Kite F, Cohen I and Slomka P J 2009 Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging Journal of the American College of Cardiology 2 273-82

    Berman D S, Kiat H, Friedman J D, Wang F P, Van Train K, Matzer L, Maddahi J and Germano G 1993 Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study Journal of the American College of Cardiology 22 1455-64

    Dae M, O'Connell J, Botvinick E, Ahearn T, Yee E, Huberty J, Mori H, Chin M, Hattner R and Herre J 1989 Scintigraphic assessment of regional cardiac adrenergic innervation Circulation 79 634-44

    Devous Sr M D, Lowe J L and Payne J K 1992 Dual-isotope brain SPECT imaging with technetium-99m and iodine-123: validation by phantom studies Journal of Nuclear Medicine 33 2030-5

    Dimitriu-Leen A C, Scholte A J and Jacobson A F 2015 123I-MIBG SPECT for Evaluation of Patients with Heart Failure Journal of Nuclear Medicine 56 25S-30S

    Du Y, Bhattacharya M and Frey E C 2014 Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator Physics in Medicine and Biology 59 2813

    Du Y and Frey E C 2009 Quantitative evaluation of simultaneous reconstruction with model-based crosstalk compensation for Tc-99m/I-123 dual-isotope simultaneous acquisition brain SPECT Medical Physics 36 2021-33

    Du Y, Tsui B M and Frey E C 2007 Model-based crosstalk compensation for simultaneous Tc-99m/I-123 dual-isotope brain SPECT imaging Medical Physics 34 3530-43

    El Fakhri G, Habert M-O, Maksud P, Kas A, Malek Z, Kijewski M F and Lacomblez L 2006 Quantitative simultaneous 99mTc-ECD/123I-FP-CIT SPECT in Parkinson’s disease and multiple system atrophy European Journal of Nuclear Medicine and Molecular Imaging 33 87-92

    El Fakhri G, Maksud P, Kijewski M, Haberi M, Todd-Pokropek A, Aurengo A and Moore S 2000 Scatter and cross-talk corrections in simultaneous Tc-99m/I-123 brain SPECT using constrained factor analysis and artificial neural networks Nuclear Science, IEEE Transactions on 47 1573-80

    El Fakhri G, Maksud P, Kijewski M, Zimmerman R and Moore S 2002 Quantitative simultaneous 99mTc/123I SPECT: design study and validation with Monte Carlo simulations and physical acquisitions Nuclear Science, IEEE Transactions on 49 2315-21

    El Fakhri G, Moore S C, Maksud P, Aurengo A and Kijewski M F 2001 Absolute activity quantitation in simultaneous 123I/99mTc brain SPECT Journal of Nuclear Medicine 42 300-8

    Ferlin G, Borsato N, Camerani M, Conte N and Zotti D 1983 New perspectives in localizing enlarged parathyroids by technetium-thallium subtraction scan Journal of Nuclear Medicine 24 438-41

    Frey E C and Tsui B 1996 A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT Nuclear Science Symposium, 1996. Conference Record., 1996 IEEE. vol. 2

    Ichihara T, Ogawa K, Motomura N, Kubo A and Hashimoto S 1993 Compton scatter compensation using the triple-energy window method for single-and dual-isotope SPECT Journal of Nuclear Medicine 34 2216-21

    Ivanovic M, Weber D, Loncaric S and Franceschi D 1994 Feasibility of dual radionuclide brain imaging with I‐123 and Tc‐99m Medical Physics 21 667-74

    Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D,
    Avner S, Barbier R, Bardies M and Bloomfield P 2004 GATE: a simulation toolkit for PET and SPECT Physics in Medicine and Biology 49 4543

    Kadrmas D J, Frey E C and Tsui B M 1999 Simultaneous technetium-99m/thallium-201 SPECT imaging with model-based compensation for cross-contaminating effects Physics in Medicine and Biology 44 1843

    Kuikka J, Yang J and Kiiliäinen H 1998 Physical performance of the Siemens E. CAM gamma camera Nuclear Medicine Communications 19 457-62

    Laruelle M, Wallace E, Seibyl J P, Baldwin R M, Zea-Ponce Y, Zoghbi S S, Neumeyer J L, Charney D S, Hoffer P B and Innis R B 1994 Graphical, kinetic, and equilibrium analyses of in vivo [123I] β-CIT binding to dopamine transporters in healthy human subjects Journal of Cerebral Blood Flow & Metabolism 14 982-94

    Lin H-H, Chuang K-S, Lin Y-H, Ni Y-C, Wu J and Jan M-L 2014 Efficient simulation of voxelized phantom in GATE with embedded SimSET multiple photon history generator Physics in Medicine and Biology 59 6231

    Ma K-H, Huang W-S, Chen C-H, Lin S-Z, Wey S-P, Ting G,
    Wang S-D, Liu H-W and Liu J-C 2002 Dual SPECT of dopamine system using [99mTc] TRODAT-1 and [123I] IBZM in normal and 6-OHDA-lesioned formosan rock monkeys Nuclear Medicine and Biology 29 561-7

    Maddahi J and Berman D 1994 Comparative feasibility of separate or simultaneous rest thallium-201/stress technetium-99m-sestamibi dual-isotope myocardial perfusion SPECT Journal of Nuclear Medicine 35 542-8

    Maksud P, Fertil B, Rica C, El Fakhri G and Aurengo A 1998 Artificial neural network as a tool to compensate for scatter and attenuation in radionuclide imaging Journal of Nuclear Medicine 39 735-45

    McCulloch W S and Pitts W 1943 A logical calculus of the ideas immanent in nervous activity The Bulletin of Mathematical Biophysics 5 115-33

    Ogawa K and Nishizaki N 1993 Accurate scatter compensation using neural networks in radionuclide imaging Nuclear Science, IEEE Transactions on 40 1020-5

    Rodrigues S, Tome B, Abreu M, Santos N, Mendes P R and Peralta L 2007 Monte Carlo Simulation and Experimental Characterization of a Dual Head Gamma Camera arXiv preprint arXiv:0711.2577

    Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychological Review 65 386

    Rumelhart D E, Hinton G E and Williams R J 1985 Learning internal representations by error propagation. Neurocomputing: Foundations of Research, MIT Press Cambridge, MA, USA

    Sandrock D, Merino M J, Norton J A and Neumann R D 1990 Parathyroid imaging by Tc/TI scintigraphy European Journal of Nuclear Medicine 16 607-13

    Segars W P, Tsui B, Lalush D, Frey E, King M and Manocha D 2001 Development and application of the new dynamic Nurbs-based Cardiac-Torso (NCAT) phantom Journal of Nuclear Medicine 42 7P

    Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Ben-Haim S and Berman D S 2008 High-speed myocardial perfusion imaging: initial clinical comparison with conventional dual detector anger camera imaging Journal of the American College of Cardiology 1 156-63

    Sisson J, Wieland D, Sherman P, Mangner T and Tobes M 1987 Metaiodobenzylguanidine as an index of the Adrenergic Nervous System Integrity and Function Journal of Nuclear Medicine 28 1624

    Stanton M S, Tuli M M, Radtke N L, Heger J J, Miles W M, Mock B H, Burt R W, Wellman H N and Zipes D P 1989 Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine Journal of the American College of Cardiology 14 1519-26

    Tatsch K, Schwarz J, Oertel W and Kirsch C-M 1991 SPECT imaging of dopamine D2 receptors with 123I-IBZM: initial experience in controls and patients with Parkinson's syndrome and Wilson's disease Nuclear Medicine Communications 12 699-708

    Wieland D M, Brown L E, Tobes M C, Rogers W L, Marsh D D, Mangner T J, Swanson D P and Beierwaltes W H 1981 Imaging the primate adrenal medulla with [123I] and [131I] meta-iodobenzylguanidine: concise communication Journal of
    Nuclear Medicine 22 358-64

    Winzelberg G G and Hydovitz J D 1985 Radionuclide imaging of parathyroid tumors: historical perspectives and newer techniques Seminars in Nuclear Medicine 15 161-70

    Young A, Gaunt J I, Croft D, Collins R, Wells C and
    Coakley A 1983 Location of parathyroid adenomas by thallium-201 and technetium-99m subtraction scanning British Medical Journal 286 1384-6

    Yukinaka M, Nomura M, Ito S and Nakaya Y 1998 Mismatch between myocardial accumulation of 123I-MIBG and 99mTc-MIBI and late ventricular potentials in patients after myocardial infarction: Association with the development of ventricular arrhythmias American Heart Journal 136 859-67

    Zhao C, Shuke N, Yamamoto W, Okizaki A, Sato J, Ishikawa Y, Ohta T, Hasebe N, Kikuchi K and Aburano T 2001 Comparison of cardiac sympathetic nervous function with left ventricular function and perfusion in cardiomyopathies by 123I-MIBG SPECT and 99mTc-tetrofosmin electrocardiographically gated SPECT Journal of Nuclear Medicine 42 1017-24

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE