研究生: |
潘尹捷 Pan, Yin-Jie |
---|---|
論文名稱: |
合成不同大小之氧化亞銅奈米方塊及其應用 Synthesis of Various-sized Cu2O Nanocubes and Their Applications |
指導教授: |
李紫原
Lee, Chi-Young |
口試委員: |
裘性天
Chiu, Hsin-Tien 徐文光 Hsu, Wen-Kuang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 氧化亞銅奈米方塊 、吸附 、光催化 、葡萄糖感測器 |
外文關鍵詞: | Cu2O nanocubes, adsorption, photocatlyst, glucose sensing |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溼式化學還原法以抗壞血酸為還原劑在鹼性環境下可以在短時間製備大量且均勻的氧化亞銅奈米方塊,再透過螯合劑的添加控制成核點的數目,調控氧化亞銅奈米方塊的大小(15 - 550 nm)。螯合劑越多,氧化亞銅奈米方塊越大;螯合能力越強,奈米方塊越大。我們也發現反應物添加順序的改變,也可以改變奈米方塊的大小。不同大小的氧化亞銅奈米方塊被應用於吸附、光催化以及葡萄糖感測。奈米方塊越小,吸附、光催化以及葡萄糖感測器的表現越好。15 nm的奈米方塊具有高比表面積以及帶正電的表面電位,在25 ppm 80 mL甲基橙溶液中只需花70分鐘即可吸附近乎99 %,遠優於活性碳粉的吸附表現。而照光更可使其降解,在氙燈照射下只需花30分鐘即可去除溶液中的甲基橙。同時,15 nm的奈米方塊在葡萄糖感測中,在0.005 - 1.5 mM的線性範圍下具有最高靈敏度366.2 µA mM-1 (R2 = 0.9953)。
Uniform Cu2O nanocubes were synthesized via wet chemical reduction method using ascorbic acid in alkali solution in short reaction period, which is simple, easy to mass production and cost-effective. Size of Cu2O nanocubes were adjusted by nucleation. Adding chelating agent markedly affects the concentration of Cu2+(aq), resulting in less amount of Cu2O nucleuses, which leads to significantly enlarged the size of Cu2O. The smallest Cu2O nanocubes can be synthesized by further adjusting the addition sequence of the reagents. Various-sized Cu2O nanocubes were applied in the application of adsorption, photocatalyst and glucose sensing. The smallest Cu2O nanocubes have the best performance when used in those applications. At 25 ppm MO, 15 nm Cu2O nanocubes with high surface area and positive zeta potential needs 70 min to reach the adsorbed percentage of approximately 99 %, which performs even better than that of conventional activated carbon. Under Xe lamp irradiation, the concentration of 25 ppm MO lowered to about 1 % just after 30 min. Furthermore, the smallest Cu2O nanocubes (15 nm) also exhibits a high sensitivity of 366.2 µA mM-1 (R2 = 0.9953) and linear range between 0.005 - 1.5 mM.
1. Zhang, Y.; Wang, D.; Zhang, X.; Qu, F. J. Nanomater. 2013, 2013, 1-1.
2. Shang, Y.; Zhang, D.; Guo, L. J. Mater. Chem. 2012, 22, (3), 856-861.
3. Bekkouche, S.; Bouhelassa, M.; Salah, N. H.; Meghlaoui, F. Z. Desalination 2004, 166, (0), 355-362.
4. Schügerl, K.; Hitzmann, B.; Jurgens, H.; Kullick, T.; Ulber, R.; Weigal, B. Trends Biotechnol. 1996, 14, (1), 21-31.
5. Rahman, M. M.; Ahammad, A. J. S.; Jin, J.-H.; Ahn, S. J.; Lee, J.-J. Sensors 2010, 10, (5), 4855-4886.
6. Ng, C. H. B.; Fan, W. Y. J. Phys. Chem. B 2006, 110, (42), 20801-20807.
7. Yin, M.; Wu, C.-K.; Lou, Y.; Burda, C.; Koberstein, J. T.; Zhu, Y.; O'Brien, S. J. Am. Chem. Soc. 2005, 127, (26), 9506-9511.
8. Chang, I. C.; Chen, P. C.; Tsai, M. C.; Chen, T. T.; Yang, M. H.; Chiu, H. T.; Lee, C. Y. CrystEngComm 2013, 15, (13), 2363-2366.
9. Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. Adv. Funct. Mater. 2007, 17, (15), 2766-2771.
10. Zhang, L.; Li, H.; Ni, Y.; Li, J.; Liao, K.; Zhao, G. Electrochem. Commun. 2009, 11, (4), 812-815.
11. Kuo, C. H.; Chen, C. H.; Huang, M. H. Adv. Funct. Mater. 2007, 17, (18), 3773-3780.
12. Huang, L.; Peng, F.; Yu, H.; Wang, H. Solid State Sci. 2009, 11, (1), 129-138.
13. Kuo, C.-H.; Huang, M. H. Nano Today 2010, 5, (2), 106-116.
14. Siegfried, M. J.; Choi, K.-S. J. Am. Chem. Soc. 2006, 128, (32), 10356-10357.
15. Siegfried, M. J.; Choi, K.-S. Angew. Chem. Int. Ed. 2005, 44, (21), 3218-3223.
16. Yu, H.; Yu, J.; Liu, S.; Mann, S. Chem. Mater. 2007, 19, (17), 4327-4334.
17. Tan, Y.; Xue, X.; Peng, Q.; Zhao, H.; Wang, T.; Li, Y. Nano Lett. 2007, 7, (12), 3723-3728.
18. Xu, H.; Wang, W.; Zhu, W. J. Phys. Chem. B 2006, 110, (28), 13829-13834.
19. Chang, Y.; Zeng, H. C. Cryst. Growth Des. 2004, 4, (2), 273-278.
20. Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, (32), 14159-14164.
21. Gou, L.; Murphy, C. J. Nano Lett. 2002, 3, (2), 231-234.
22. Zhang, D.-F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X.-D.; Zhang, Z. J. Mater. Chem. 2009, 19, (29), 5220-5225.
23. Juang, R.-S.; Lin, L.-C. Water Res. 2000, 34, (1), 43-50.
24. Bessekhouad, Y.; Robert, D.; Weber, J. V. Catal. Today 2005, 101, (3–4), 315-321.
25. Zhou, W.; Yan, B.; Cheng, C.; Cong, C.; Hu, H.; Fan, H.; Yu, T. CrystEngComm 2009, 11, (11), 2291-2296.
26. Clark, L. C.; Lyons, C. Ann. N. Y. Acad. Sci. 1962, 102, (1), 29-45.
27. Toghill, K. E.; Compton, R. G. Int. J. Electrochem. Sci. 2010, 5, (9), 1246-1301.
28. Gao, Z.; Liu, J.; Chang, J.; Wu, D.; He, J.; Wang, K.; Xu, F.; Jiang, K. CrystEngComm 2012, 14, (20), 6639-6646.
29. Hu, Q.; Wang, F.; Fang, Z.; Liu, X. Colloids Surf.,B, 2012, 95, (0), 279-283.
30. Wang, A.-J.; Feng, J.-J.; Li, Z.-H.; Liao, Q.-C.; Wang, Z.-Z.; Chen, J.-R. CrystEngComm 2012, 14, (4), 1289-1295.
31. Liu, M.; Liu, R.; Chen, W. Biosens. Bioelectron. 2013, 45, (0), 206-212.
32. Liao, S.-Y.; Whang, C.-W. J. Chromatogr. A 1996, 736, (1–2), 247-254.
33. Field, T. B.; McCourt, J. L.; McBryde, W. A. E. Can. J. Chem. 1974, 52, (17), 3119-3124.
34. Lindberg, B. J.; Hamrin, K.; Johansson, G.; Gelius, U.; Fahlman, A.; Nordling, C.; Siegbahn, K. Phys. Scr. 1970, 1, (5-6), 286.
35. Zhu, C.; Osherov, A.; Panzer, M. J. Electrochim. Acta 2013, 111, (0), 771-778.
36. Ghijsen, J.; Tjeng, L. H.; van Elp, J.; Eskes, H.; Westerink, J.; Sawatzky, G. A.; Czyzyk, M. T. Phys. Rev. B 1988, 38, (16), 11322-11330.
37. McIntyre, N. S.; Cook, M. G. Anal. Chem. 1975, 47, (13), 2208-2213.
38. Chen, F.; Xie, Y.; He, J.; Zhao, J. J. Photochem. Photobiol. A:Chem. 2001, 138, (2), 139-146.
39. Zen, J.-M.; Hsu, C.-T.; Senthil Kumar, A.; Lyuu, H.-J.; Lin, K.-Y. Analyst. 2004, 129, (9), 841-845.
40. Wang, L.; Fu, J. Y.; Hou, H. Q.; Song, Y. H. Int. J. Electrochem. Sci. 2012, 7, (12), 12587-12600.
41. Zhou, X. M.; Nie, H. G.; Yao, Z.; Dong, Y. Q.; Yang, Z.; Huang, S. M. Sens. Actuators, B 2012, 168, 1-7.