研究生: |
羅晟 Cheng Ruo |
---|---|
論文名稱: |
在格子圖和圓環圖的相連P3遊戲 Connected P3-game on grids and tori |
指導教授: |
韓永楷
Wing-Kai Hon |
口試委員: |
盧錦隆
Chin-Lung Lu 李哲榮 Che-Rung Lee |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | P3遊戲 |
外文關鍵詞: | P3-game |
相關次數: | 點閱:46 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
令 G = (V, E)為一個相連圖。我們說一個集合 U 為 P3-convex: 如果對於每個掉在 V \ U 的點,該點的鄰居最多只有一個點屬於 U。對於任意集合 W,我們用 σ(W)定義包含 W 的唯一且最小 P3-convex 集合。 兩個玩家在一個圖上玩 connected P3-game,輪流挑選沒有被標記過的點,遊戲開始所有點都沒有被標記,M 為被標記的點集合,一開始是空集合,玩家的每一步可以標記一個先前沒有被標記的點 v,使得 M
被更新為 M’ = σ(M ∪ {v}),且如果 M’是相連的,這步才可以下,
當該某為玩家時,如果發現所有點都被標記,則該玩家就輸了。在這
篇論文中,我們考慮在格子圖與圓環圖上玩 connected P3-game,我們
給了該遊戲的 Grundy 值公式。我們還進一步考慮在路徑和環上玩
connected Pr-game,當 r 大於等於 3。
Let G = (V,E) be a connected graph. We say a set U ⊆ V is P3-convex if every vertex of V\U has at most one neighbor in U. For any set W ⊆ V , we use σ(W) to denote the unique minimal P3-convex set of vertices that contains W. Two players play the connected P3-game on a graph by alternately selecting unmarked vertices. At the start of the game all vertices are unmarked, and the set of marked vertices, denoted by M, is empty. A move consists of marking a previously unmarked vertex v, so that M is updated to M0 = σ(M ∪{v}), and such a move is legal only when M0 is connected. When it is a player’s turn to move, he loses the game if all vertices are marked. In this thesis, we consider the connected P3-game on grids and tori, and give closed form formulae of their corresponding Grundy values. We also consider the related Pr-game, with r ≥ 3, that is played on a path or a cycle.
[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathematical Plays, Volume 1. AK Peters/CRC Press, 2001.
[2] B. Bollob´as. The Art of Mathematics: Coffee Time in Memphis. Cam bridge University Press, 2006.
[3] J. H. Conway. On Numbers and Games. AK Peters/CRC Press, 2000.
[4] E. Duchˆene, M. Dufour, S. Heubach, and U. Larsson. Building Nim. International Journal of Games Theory, 45(4):859–873, 2016.
[5] M. Dufour and S. Heubach. Circular Nim Games. The Electronic Journal of Combinatorics, 20(2):#P22, 2013.
[6] T. S. Ferguson. Game Theory, Part I, 2014. www.math.ucla.edu/~tom/Game_Theory/Contents.html
[7] M. Gymrek and J. Li. Theory of Impartial Games. Course Notes of The Mathematics of Toys and Games, MIT Course SP.268, 2011. web.mit.edu/sp.268/www/nim.pdf
[8] W. K. Hon, T. Kloks, F.-H. Liu, H.-H. Liu, and T. M. Wang. P3-Games. The Computing Research Repository (CoRR), abs/1608.05169, 2016.
[9] W. K. Hon, T. Kloks, F.-H. Liu, H.-H. Liu, and T. M. Wang. P3 Games on Chordal Bipartite Graphs. The Computing Research Repository (CoRR), abs/1610.07018, 2016.
[10] E. H. Moore. A Generalization of the Game called Nim. The Annals of Mathematics, 11(3):93–94, 1910.
[11] R. J. Nowakowski. Games of No Chance. Cambridge University Press, 1998.
[12] D. Wolfe, M. H. Albert, and R. J. Nowakowski. Lessons in Play: An Introduction to Combinatorial Game Theory. AK Peters/CRC Press, 2007.
[13] Y. Yamasaki. On Misere Nim-Type Games. Journal of the Mathematical Society of Japan, 32(3):461–475, 1980.