簡易檢索 / 詳目顯示

研究生: 劉哲宇
Che-Yu Liu
論文名稱: 金屬誘發側向結晶研究在奈米接觸壓印的非晶矽奈米線
Metal induced lateral growth of Amorphous Si nanowires patterned by Nanocontact printing lithography
指導教授: 葉鳳生
Fon-Shan Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 78
中文關鍵詞: 奈米接觸壓印技術鎳金屬誘發側向結晶奈米非晶矽線
外文關鍵詞: nano-contact printing, nickel induced lateral crystallization, amorphous silicon nanowires
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的為使用奈米接觸壓印技術,將胺基矽烷轉印於非晶矽上並當作蝕刻阻擋層,以製作出奈米級的非晶矽線,其後利用鎳金屬誘發側向結晶技術將非晶矽線結晶化。
    首先,為了找到最佳的轉印條件,將胺基矽烷 : 甲醇為1 : 17的沾印用溶液(ink)均勻塗佈在矽晶圓上,其後製備線寬80、100、150、200 nm其線寬與線距為1 : 1與1 : 10的HSQ模仁,將胺基矽烷沾印於模仁上,接著使用奈米接觸壓印技術將胺基矽烷轉印於乾氧基材與非晶矽薄膜上。在乾氧與非晶矽薄膜上做氧電漿的表面處理,以增強胺基矽烷和基材之間的附著力。使用Nanonex-2000機台,試以不同的轉印壓力15~60 psi,於溫度100 oC、時間30 sec的條件下來完成壓印技術。再使用胺基矽烷當作蝕刻阻擋層,使用乾式蝕刻來定義奈米非晶矽線的圖形
    再者,使用2~8 nm厚度的鎳金屬鍍覆在非晶矽薄膜上,於550 oC 進行1.5-12 hr的退火後,為了區分出非晶矽與因金屬誘發結晶而形成的多晶矽,使用不同濃度1/9/50/50 -1/9/5/50的蝕刻溶液HF/H2O/HNO3/CH3COOH對sample進行溼蝕刻3-7 s。再將最好的條件用於奈米非晶矽線的結晶化上。FESEM與AFM則被用於觀察轉印後的胺基矽烷圖形與奈米非晶矽線,以及多晶矽的形貌。


    In this thesis, the object is to use aminosilane transferred on amorphous silicon as a hard mask to fabricate amorphous silicon nanowires by nano-contact printing technique and apply nickel induced lateral crystallization technique to fabricate poly Si nanowires.
    Firstly, the ink prepared by mixing aminosilane with methanol at volume ratio is 1 : 17, was spin coated on silicon wafer. The ink aminosilane was then transferred on the HSQ molds with line width = 80, 100, 150, and 200 nm and width/space ratio 0.1 and 1. To promote adhesion of aminosilane and substrates, O2 plasma treatment was applied on substrates. The nano-contact printing technique was developed to transfer aminosilane from HSQ mold to dry oxide and amorphous Si film with printing pressure is 15-60 psi and temperature is 100 oC for 30 s. Then the transferred aminosilane pattern was used as a hard mask to define amorphous Si nanowires by dry etching process.
    Secondly, the Ni with thickness is 2-8 nm was evaporated on amorphous Si film and Si nanowires. The samples were annealed at 550 oC for 1.5-12 hr, subsequently. In order to distinguish amorphous-Si and poly Si formed by metal induced lateral growth, the etching solution HF/H2O/HNO3/CH3COOH at volume ratio 1/9/50/50-1/9/5/50 was to wet etch the samples for 3-7 s. The above transferred aminosilane, Si nanowries and morphology of poly Si were examined by SEM and AFM.

    目錄 第一章 緒論 第二章 材料簡介 2-1 HSQ材料特性 2-2 胺基矽烷材料特性 2-3 aminosilane及基板、模仁的沾印 第三章 鎳金屬誘發側向結晶的形成機制 3-1 金屬誘發結晶 3-2 鎳金屬誘發側向結晶的機制 第四章 微影製程與量測方法 4-1 微影製程-NX-2000奈米壓印系統 4-2 微影製程-電子束曝光系統 4-3 量測-原子力顯微鏡 4-4 量測-場發射掃描式電子顯微鏡 4-5 量測-X光繞射分析儀 第五章 實驗步驟與實驗方法 5-1 奈米接觸壓印技術製作奈米非晶矽線 5-1.1 HSQ模仁的製備 5-1.1.1 HSQ材料的鍍覆 5-1.1.2 Mold 1 : 10及1 : 1圖形的製作 5-1.2 Aminosilane的塗佈 5-1.3 模仁的沾印 5-1.4 奈米接觸壓印 5-1.4.1 Mold 1 : 10於乾氧基板奈米接觸壓印 5-1.4.2 Mold 1 : 10於非晶矽薄膜奈米接觸壓印 5-1.4.3 Mold 1 : 1於矽晶片上奈米接觸壓印 5-1.5 胺基矽烷與非晶矽的蝕刻和奈米非晶矽線的製作 5-2 鎳金屬側向結晶技術進行奈米非晶矽線的結晶化 5-2.1 於非晶矽上鎳薄膜的鍍覆與鎳矽化物( NiSi2 )的形成 5-2.2 鎳金屬誘發側向結晶技術的研究 第六章 實驗結果與討論 6-1 奈米接觸壓印技術製作奈米非晶矽線 6-1.1 模仁樣品 6-1.2 ink塗佈條件 6-1.3 模仁沾印 6-1.4 Mold 1 : 10與Mold 1 : 1的轉印 6-1.4.1 基材DO與基材AS表面粗糙度 6-1.4.2 Mold 1 : 10於基材DO轉印 6-1.4.3 Mold 1 : 10於基材AS轉印 6-1.4.4 Mold 1 : 1於基材S上轉印 6-1.5 胺基矽烷與非晶矽薄膜蝕刻 6-2 使用鎳金屬側向結晶技術進行奈米非晶矽線的結晶化 6-2.1 鎳矽化物( NiSi2 )形成 6-2.2 鎳金屬誘發側向結晶 第七章 結論 Reference

    Reference

    [1] Koo SM , Fujiwara A , Han JP , Vogel EM , Richter CA , Bonevich JE , “High Inversion Current in Silicon Nanowire Field Effect Transistors” , Nano Letters , vol. 4 , pp. 2197-2201 , Nov. 2004
    [2] C. W. Chang , C. K. Deng , H. R. Chang , C. L. Chang , T. F. Lei , “A Simple Spacer Technique to Fabricate Poly-Si TFTs With 50-nm Nanowires Channels”, IEEE Electron Device Letters , vol. 28 , no. 11 , pp. 993-995 , Nov. 2007
    [3] C. P. Lin , B. Y. Tsui , M. J. Yang , R. H. Huang , and C. H. Chien , “High Performance poly-silicon TFTs using HfO2 gate dielectric”, IEEE Electron Device Lett. vol. 27 , no. 5 , pp. 360-363 , May 2006
    [4] T. S. Huck et al. , Current Opinion in Solid State and Materials Science , Polymers in nanotechnology , 6 , 2002 , 3-8
    [5] Hong-Wei , Beinn V. O. Muir , Guillaume Fichet , and Wilhelm T. S. Huck , Langmuir 2003 , 19 , 1963-1965
    [6] C. Hayzelden , J. L. Batstone , “Silicide formation and silicide-mediated Crystallization of nickel-implanted amorphous silicon thin films” , J. Appl. Phys. 73 (12) , 15 June 1993
    [7] C. Y. Yuen , M. C. Poon , W. Y. Chan , M. Qin , “Investigation of grain formation and growth in nickel-induced lateral crystallization process” , Journal of Applied Physics , vol. 92 , no. 10 , Nov. 2002
    [8] Y. C. Wu , T. C. Chang , P. T. Liu , Y. C. Wu , C. W. Chou , C. H. Tu , J. C. Lou , and C. Y. Chang , “Mobility enhancement of polycrystalline-Si thin-film transistors using nanowire channels by pattern-dependent metal-induced lateral crystallization” , Applied Physics Letters 87 , 143504 (2005)
    [9] 陳立偉 ,“使用胺基-矽烷應用在奈米接觸壓印技術的研究”, 國立清華大學電子工程研究所碩士畢業論文 , 2006
    [10] H. C. Scheer , H. Schulz , Microelectronic Engineering , 56 , 311-332 (2001)
    [11] C. C. Yang , W. C. Chen , J. Mater . Chem. , 12 , 1138-1141 (2002)
    [12] 邱昱維 , 楊子寬 , 黃紀嚴 , The Research of Coating Mode between the Silane Coupling Agent and Nano-Alumina Powder , 第二屆資源工程研討會論文集
    [13] N-(3-(TRIMETHOXYSILYL)PROPYL)ETHYLENEDIAMINE (AEAPTMS) , SID Initial Assessment Report For SIAM 17 , 2003
    [14] Pascal Gallo , Benoit Viallet , Emmanuelle Daran , Chantal Fontaine , Applied Physics Letter 87 , 183111 (2005)
    [15] P. G. de Gennes "Wetting: statics and dynamics" Reviews of Modern Physics , 57 , 3 (part I) , July 1985 , p.827-863
    [16] O. Nast , T. Puzzer , L. M. Koschier , A. B. Sproul , S. R. Wenham ,“Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic”, Applied Physics Letter 73 , 3214 (1998)
    [17] K. Andrade and J. Jang , “Gold Induced Crystallization of Amorphous Silicon”, Journal of the Korean Physical Society , 39 , 376 (2001)
    [18] Z. Jin , G. A. Bhat , M. Yeung , H. S. Kwok , M. Wong , “Nickel induced crystallization of amorphous silicon thin films” , J. Appl. Phys. 84 , 194 (1998)
    [19] S. W. Lee , Y. C. Jeon , and S. K. Joo , “Pd induced lateral crystallization of amorphous Si thin films” , Appl. Phys. Lett. 66 , 1671 (1995)
    [20] K. N. Tu and J. W. Mayer , “in Thin Films-Interdiffusion and Reactions” , edited by J. M. Poate , K. N. Tu , and J. W. Mayer , Wiley , New York , 359 (1978)
    [21] E. A. Guliants and W. A. Anderson , “Study of dynamics and mechanism of metal-induced silicon growth” , J. Appl. Phys. 89, 46-48 (2001)
    [22] E. A. Guliants , W. A. Anderson , L. P. Guo , V. V. Guliants , ”Transmission electron microscopy study of Ni silicides formed during metal-induced silicon growth” , Thin Solid Films , 385 , 74 (2001)
    [23] C. P. Chao . Y. S. Wu , T. L. Lee and Y. H. Wang , “Wafers bonding by Ni induced crystallization of amorphous silicon” , J. J. Appl. Phys. 42(2003) , pp.5527-5530
    [24] S. Y. Yoon , S. K. Kim , J. Y. Oh , Y. J. Choi , W. S. Shon , C. O. Kim , and J. J . , "A High-performance polycrystalline silicon thin-film transistor using
    metal-induced crystallization with Ni solution” , Jpn , J. Appl. Phys , 37 , 7193 (1998)
    [25] Dahl-Young Khang , Hong H. L ee , Applied Physics Letter , vol. 76 , no. 7 (2000)
    [26] H. C. Cho , F. C. Chou , M. W. Wang and C. S. Tsai , “Effect of Coriolis Force on Fingering Instability and Liquid Usage Reduction”, J. Appl. Phys. Vol. 44 , no. 19 , 2005
    [27] C. M. Hu ,Yew Chung Sermon Wu , and J. W. Gong , “Comparison of Ni-Metal Induced Lateral Crystallization Thin-Film Transistors Fabricated by Rapid Thermal Annealing and Conventional Furnace Annealing at 565 oC ” , Japanese Journal of Applied Physics Vol. 46 , No 11 , 2007 , pp. 7204-7207
    [28] M. M. A. Hakim , I. Matko , B. Chenevier , and P. Ashburn , “Perimeter Crystallization of Amorphous Silicon around a Germanium Seed” , Electrochemical and Solid-State Letters , 9(7) G236-G238 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE