簡易檢索 / 詳目顯示

研究生: 何佳政
Ho, Jia-Jeng
論文名稱: 基於加密恐懼和貪婪指數的股市預測模型
Stock Market Prediction Model Based on Crypto Fear and Greed Index
指導教授: 韓永楷
Hon, Wing-Kai
口試委員: 李哲榮
Lee, Che-Rung
蔡孟宗
Tsai, Meng-Tsung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 26
中文關鍵詞: 機器學習比特幣
外文關鍵詞: machine learning, Bitcoin
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去,經濟學家認為情緒的改變無法大幅度的對股市價格產生影響,但隨
    著不斷的發展,越來越多人開始對市場情緒研究,試圖檢查其是否以任何方式
    造成了目前仍無法解釋的市場價格變化。
    本論文針對全世界加密貨幣市場中交易量最大的「比特幣」(Bitcoin) 作出研
    究,資料集為2020年到2022年的歷史交易資料。這一時期的特點是比特幣價格
    發生了顯著變化,投資者情緒也存在巨大變化。我們模擬了D’Agostino (2021)
    開發出來的模型,並參考了近年來針對加密貨幣提出來的情緒指標「Crypto
    Fear and Greed Index」分析比特幣價格的變化與市場情緒有無相關。本篇研究
    展示當我們參考了Crypto Fear and Greed Index時,可改良比特幣漲跌的預測,
    使我們的模型相較D’Agostino之原始模型更加準確。


    In the past, economists believed that changes in market sentiment could not
    make significant impacts on stock prices. However, as time goes by, more and
    more research were conducted on market sentiment, checking whether it in any
    way creates those price changes that so far cannot be explained.
    In this thesis, we investigate Bitcoins (Nakamoto, 2008), the most traded cryptocurrency in the world, on its pricing from 2020 to 2022. This period witnessed
    significant fluctuations in both Bitcoin prices and market sentiment. We simulate
    the model developed by D’Agostino (2021), and augment it with Crypto Fear and
    Greed Index, which is a recently proposed sentiment indicator for crypocurrency
    market, to investigate whether there is any relationship between Bitcoin price
    changes and market sentiment.
    Our results demonstrate that taking Crypto Fear and Greed Index into account
    can steadily improve Bitcoin’s price-up and price-down prediction, thus producing
    a more accurate model than D’Agostino’s original model.

    Abstract (Chinese) I Abstract II Contents III List of Figures V List of Tables VI 1 Introduction 1 2 Related Work 4 2.1 Bitcoin Price Prediction 4 2.2 Market Sentiments 5 3 Input Data 7 3.1 Market Data 7 3.1.1 Bitcoin 8 3.1.2 Crypto Fear and Greed Index 8 3.2 Feature Engineering 9 3.2.1 Technical Indicators 10 3.2.2 Blockchain Indicators 10 3.2.3 Crypto Fear and Greed Index Feature 11 4 Method 13 4.1 D’Agostino’s Model 14 4.1.1 Train Data vs Test Data 14 4.1.2 Labeling 14 4.1.3 Machine Learning Algorithm 15 4.1.4 Hyperparameter 16 4.2 Experimenting D’Agostino’s Model 17 4.3 Modifying D’Agostino’s Model 17 4.3.1 New Labeling 18 4.3.2 New Validation 18 5 Evaluation 20 5.1 Experimental Setup 20 5.2 Experimental Results 20 6 Conclusion 24 Bibliography 25

    [1] Muhammad Amjad and Devavrat Shah. Trading Bitcoin and Online Time
    Series Prediction. In Proceedings of NIPS 2016 Time Series Workshop, pages
    1–15, 2016.
    [2] David Bourghelle, Fredj Jawadi, and Philippe Rozin. Do Collective Emotions Drive Bitcoin Volatility? A Triple Regime-Switching Vector Approach.
    Journal of Economic Behavior and Organization, 196:294–306, 2022.
    [3] Jaroslav Bukovina and Mat´uˇs Marticek. Sentiment and Bitcoin Volatility.
    MENDELU Working Papers in Business and Economics 2016-58, Mendel
    University of Brno, 2016.
    [4] Conghui Chen, Lanlan Liu, and Ningru Zhao. Fear Sentiment, Uncertainty,
    and Bitcoin Price Dynamics: The Case of COVID-19. Emerging Markets
    Finance and Trade, 56(10):2298–2309, 2020.
    [5] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings of ACM SIGKDD International Conference on Knowledge
    Discovery and Data Mining, pages 785–794, 2016.
    [6] Zheshi Chen, Chunhong Li, and Wenjun Sun. Bitcoin Price Prediction using
    Machine Learning: An Approach to Sample Dimension Engineering. Journal
    of Computational and Applied Mathematics, 365:Article 112395, 2020.
    [7] Giuseppe D’Agostino. Study and Development of Machine Learning-Based
    Cryptocurrency Trading Systems. Master’s thesis, Politecnico di Torino, 2021.
    http://webthesis.biblio.polito.it/id/eprint/19177.
    [8] Alex Greaves and Benjamin Au. Using the Bitcoin Transaction Graph to Predict the Price of Bitcoin, 2015. Available at:
    https://snap.stanford.edu/class/cs224w-2015/projects 2015/.
    [9] Vytautas Karalevicius, Niels Degrande, and Jochen De Weerdt. Using Sentiment Analysis to Predict Interday Bitcoin Price Movements. Journal of Risk
    Finance, 19(1):56–75, 2018.
    [10] Sean McNally, Jason Roche, and Simon Caton. Predicting the Price of Bitcoin
    using Machine Learning. In Euromicro Conference on Parallel, Distributed
    and Network-Based Processing, pages 339–343, 2018.
    [11] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
    https://bitcoin.org/bitcoin.pdf.

    QR CODE