簡易檢索 / 詳目顯示

研究生: 周明宗
論文名稱: 添加BaO-ZnO-B2O3玻璃對BaTi4O9的燒結行為與微波介電性質之影響
指導教授: 簡朝和
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 29
中文關鍵詞: 微波介電BaTi4O9Ba0-ZnO-B2O3玻璃燒結
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討BaO對BaO-ZnO-B2O3玻璃系統性質的影響以及添加BaO-ZnO-B2O3玻璃對BaTi4O9粉末燒結的影響。隨著玻璃成分BaO的量增加,BaO-ZnO-B2O3玻璃的軟化點(Ts)、結晶溫度(Tcr)與熔點(Tm)隨之降低。而BaO-ZnO-B2O3玻璃經熱處理後,形成的結晶相由Zn3B2O6和Zn4B6O17變成Ba4B2O7、Ba2B2O5與Ba2B10O17。此外,BaO-ZnO-B2O3玻璃的介電常數隨著玻璃成分BaO的量增加而提高。
    玻璃成分BaO明顯改善BaO-ZnO-B2O3玻璃與BaTi4O9的潤濕情況。但添加BaO-ZnO-B2O3玻璃的燒結緻密度卻隨著玻璃成分BaO的量增加而降低。其原因在於BaO-ZnO-B2O3玻璃與BaTi4O9的燒結系統屬於反應燒結,而在燒結過程中玻璃成分BaO的存在會抑制BaO-ZnO-B2O3玻璃與BaTi4O9間的固相反應,以致於燒結緻密度降低。


    目錄 表目錄 圖目錄 一、前言 1 二、實驗方法 4 2.1 粉末與試片製備 4 2.1.1 BaTi4O9粉末 4 2.1.2 BaO-ZnO-B2O3玻璃粉末 4 2.1.3 BaTi4O9粉末與BaO-ZnO-B2O3玻璃混合 5 2.1.4 試片準備 5 2.1.5 脫脂和燒結(Binder Burnout and Sintering) 6 2.2 物理性質量測 6 2.2.1 相對燒結密度(Relative Sintered Density,RSD) 6 2.2.2 玻璃基本性質量測 7 2.2.3 燒結收縮量測 7 2.2.4 X-ray繞射分析(X-ray Diffraction Analysis) 7 2.2.5 微結構觀察 8 2.2.6 低頻介電性質量測 8 2.2.7 高頻介電性質量測 8 三、結果與討論 10 3.1 BaTi4O9粉末 10 3.1.1 BaTi4O9粉末之形成反應與介電性質 10 3.2 BaO-ZnO-B2O3玻璃 11 3.2.1 BaO-ZnO-B2O3玻璃的基本性質 11 3.2.2 BaO-ZnO-B2O3玻璃的結晶行為 13 3.2.3 BaO-ZnO-B2O3 玻璃的介電性質 14 3.3 添加BaO-ZnO-B2O3玻璃對BaTi4O9燒結行為的影響 16 3.3.1 BaO-ZnO-B2O3玻璃與BaTi4O9的潤濕情形 16 3.3.2 添加BaO-ZnO-B2O3玻璃的燒結緻密情形 16 3.3.3 添加BaO-ZnO-B2O3玻璃燒結後XRD分析 18 3.3.4 添加BaO-ZnO-B2O3玻璃對介電性質的影響 19 3.4 BaO-ZnO-B2O3玻璃與BaTi4O9的燒結機制 19 3.4.1 界面反應 20 3.4.2 TMA分析 22 3.4.3 結晶強度分析 23 四、結論 25 五、參考文獻 27

    [1] H. M. O’Bryan, J. Thomson, and J. K. Plourde, “A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57, 450-53 (1974)
    [2] S. G. Mhaisalkar, W. E. Lee, and D. W. Readey, “Processing and Characterization of BaTi4O9,” J. Am. Ceram. Soc., 72 [11], 2154-58 (1989)
    [3] H. M. O’Bryan, JR., and J. Thomson, JR. “Phase Equilibria in the TiO2-Rich Region of the System BaO–TiO2,” J. Am. Ceram. Soc., 57 [12], 522–26 (1974)
    [4] S. Y. Zhang, X. Wu, X. L. Chen, M. He, Y. G. Cao, Y. T. Song, and D. Q. Ni, “Phase Relations in the BaO-B2O3-TiO2 System and the Crystal Structure of BaTi(BO3)2,” Mater. Res. Bull., 38, 783-88 (2003)
    [5] S. G. Mhaisalkar, D. W. Readey, and S. A. Akbar, “Microwave Dielectric Properties of Doped BaTi4O9,” J. Am. Ceram. Soc., 74 [8], 1894–98 (1991)
    [6] T. Negas, G. Yeager, S. Bell, and N. Coats, “BaTi4O9/Ba2Ti9O20-Based Ceramics Resurrected for Modern Microwave Applications,” J. Am. Ceram. Soc. Bull., 72, 80–89 (1993)
    [7] J. H. Choy, and Y. S. Han, “Microwave Characteristics of BaO–TiO2 Ceramics Prepared via a Citrate Route,” J. Am. Ceram. Soc., 78 [5], 1167–72 (1995)
    [8] M. H. Weng, T. J. Liang and C. L. Huang, “Lowering of sintering temperature and microwave dielectric properties of BaTi4O9 ceramics prepared by the polymeric precursor method,” J. Eur. Ceram. Soc., 22, 1693-98 (2002)
    [9] C. F. Yang, “The Microwave Characteristics of Glass-BaTi4O9 Ceramics,” Jpn. J. Appl. Phys., 38, 3576-79 (1999)
    [10] D. W. Kim, D. G. Lee, and K. S. Hong, “Low-Temperature Firing and Microwave Dielectric Properties of BaTi4O9 with Zn-B-O Glass System,” Mater. Res. Bull., 36, 585-95 (2001)
    [11] S. G. Lu, K. W. Kwok, H. L. W. Chan, and C. L. Choy, “Structural and Electrical Properties of BaTi4O9 Microwave Ceramics Incorporated with Glass Phase,” Mater. Sci. and Eng., B99, 491-94 (2003)
    [12] C. M. Cheng, C. F. Yang, S. H. Lo, and T. Y. Tseng, “Sintering BaTi4O9/Ba2Ti9O20-based Ceramics by Glass Addition,” J. Eur. Ceram. Soc., 20, 1061-67 (2000)
    [13] 羅毅榮, 吳振名 “微波界電質低溫共燒材料開發及機理研究,” 國立清華大學碩士論文(1996)
    [14] D. N. Kim, J. Y. Lee, J. S. Huh, and H. S. Kim, “Thermal and Electrical Properties of BaO-B2O3-ZnO Glasses,” J. Non-Cryst. Solids, 306, 70-75 (2002)
    [15] J. M. Wu, and H. L. Huang, “Microwave Properties of Zinc, Barium and Lead Borosilicate Glasses,” J. Non-Cryst. Solids, 206, 116-24 (1999)
    [16] B. W. Hakki, and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IRE Transactions on Microwave Theory and Techniques, MTT-8, 402-10 (1960)
    [17] Y. Kobayashi, and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-loss Materials by the Dielectric Rod Resonator Method,” IEEE Transactions on Microwave Theory and Techniques, MTT-33, 586-92 (1985)
    [18] H. Scholze, “Glass, Nature, Structure, and Properties,” 3rd Ed., Springer, New York, 189-318 (1991)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE