研究生: |
李佳樺 Lee, Chia-Hwa |
---|---|
論文名稱: |
微流體實驗室晶片系統應用於銅配位聚合物單晶之化學合成 Microfluidic Lab on a chip for chemical synthesis of copper coordination complex single crystal |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 實驗室晶片 、銅配位聚合物 、微流體 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微流體實驗室晶片(Lab on a Chip)是將研究和操作尺度微小化,在化學層面的應用,可直接減少藥品的使用量,大幅縮小存放空間,達到減容減廢的綠色和經濟目標。本研究已成功示範出兩種新型微流道實驗室晶片,並應用於有機無機金屬配位聚合物的製備。
首先使用層流概念設計Y字型流道實驗室晶片,使用PDMS與玻璃來製作雙層結構,其目地為達到藥品、溶劑的使用量顯著減小,並且在結晶時間略優於傳統試管操作下,使用Y字型流道晶片,成功的在流道內合成出{[Cu(bpe)(SO4)(H2O)3]•3.5(H2O)•0.5(CH3OH)}n,但其缺點是僅能做單一反應條件的結晶測試,因此在第二部分設計可陣列反應的旋轉晶片,利用製作PMMA雙層可轉動構想的實驗室晶片,搭配陣列快速選取結晶條件設計,使上下腔室碰觸進而反應,製作出一套高效率、低成本,用於快速篩選結晶條件的實驗室晶片,並成功在此組晶片內,合成出,[Cu2(AcO)4(bpa)]n、{[Cu(AcO)2(bpa)(H2O)]∙2H2O}n、{[Cu(bpa)2(SO4)]•3.5H2O∙CH3OH}n配位聚合物,上述配位聚合物,經由X射線單晶繞射儀做結晶結構的確認。
Abstract
This research explores how miniaturization may revolutionize chemical synthesis highlighting in particular environmental benefits of this new lab on a chip technology, which includes solvent less, in situ crystalline generation and integrated step-controllable reaction. Furthermore, the low required volume of preparing chemicals at point of use avoids the need to store and transport hazardous materials.
We demonstrate two novel crystal synthesis chips. First, the crystalline of {[Cu(bpe)(SO4)(H2O)3]•3.5(H2O)•0.5(CH3OH)}n was successfully prepared based on laminar flow in order to reduce the amount of sample and solvent by Y-font channel chip. Traditional crystalline synthesis methods are neither environmental friendly nor economic; our second approach solves these problems. The double rotatable layers consists of two different reaction chambers (upper and lower layers) on chip made by PMMA can be used for high throughput without leakage and can easily be disassembled and reassembled. Our method is suitable for ordinary labs having no expensive equipment to fabricate microfluidic chips. In this study [Cu2(AcO)4(bpa)]n、{[Cu(AcO)2(bpa)(H2O)]∙2H2O}n、{[Cu(bpa)2(SO4)]•3.5H2O∙CH3OH}n have been synthesized in double rotatable layers chip and identified by SCXRD. This lab on a chip approach provides an alternative and promising method with environmental benefits and economic advantage.
1. Feynman, R. P., There's Plenty of room at the Bottom. 1959.
2. Feynman, R. P., Infinitesimal Machinery. 1984.
3. Fan, L. S.; Tai, Y. C.; Muller, R. S., Integrated Movable Micromechanical Structures for Sensors and Actuators. Ieee T Electron Dev 1988, 35 (6), 724-730.
4. Toft, K. N.; Vestergaard, B.; Nielsen, S. S.; Snakenborg, D.; Jeppesen, M. G.; Jacobsen, J. K.; Arleth, L.; Kutter, J. P., High-throughput Small Angle X-ray Scattering from proteins in solution using a microfluidic front-end. Anal. Chem. 2008, 80 (10), 3648-3654.
5. 許樹恩、吳泰伯, X光繞射原理與材料結構分析. 國科會精儀中心: 台北, 1993.
6. Manz, A.; Fettinger, J. C.; Verpoorte, E.; Ludi, H.; Widmer, H. M.; Harrison, D. J., Micromachining of Monocrystalline Silicon and Glass for Chemical-Analysis Systems - a Look into Next Century Technology or Just a Fashionable Craze. Trac-Trend Anal Chem 1991, 10 (5), 144-149.
7. Harrison, D. J.; Manz, A.; Fan, Z. H.; Ludi, H.; Widmer, H. M., Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip. Anal. Chem. 1992, 64 (17), 1926-1932.
8. Keith E. Herold; A. R., Lab on a chip technology Caister Academic Press: Norfolk, UK 2009; Vol. v. 1. Fabrication and microfluidics.
v. 2. Biomolecular separation and analysis. .
9. 林炳承、秦建華, 微流控芯片實驗室. 科學出版社: 北京, 2006.
10. Menz Wolfgang; Mohr Jurgen, Paul Oliver, Microsystem technology. Wiley-VCH: New York, 2001.
11. Tompsett, G. A.; Conner, W. C.; Yngvesson, K. S., Microwave synthesis of nanoporous materials. Chemphyschem 2006, 7 (2), 296-319.
12. Leng, J.; Salmon, J. B., Microfluidic crystallization. Lab Chip 2009, 9 (1), 24-34.
13. Dittrich, P. S.; Tachikawa, K.; Manz, A., Micro total analysis systems. Latest advancements and trends. Anal. Chem. 2006, 78 (12), 3887-3907.
14. West, J.; Becker, M.; Tombrink, S.; Manz, A., Micro total analysis systems: Latest achievements. Anal. Chem. 2008, 80 (12), 4403-4419.
15. Jensen, K. F., Microreaction engineering - is small better? Chem Eng Sci 2001, 56 (2), 293-303.
16. Zheng, B.; Ismagilov, R. F., A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew. Chem. Int. Edit. 2005, 44 (17), 2520-2523.
17. Zhao, Y. C.; Chen, G. W.; Yuan, Q., Liquid-liquid two-phase flow patterns in a rectangular microchannel. Aiche. J. 2006, 52 (12), 4052-4060.
18. Worz, O.; Jackel, K. P.; Richter, T.; Wolf, A., Microreactors - A new efficient tool for reactor development. Chem. Eng. Technol. 2001, 24 (2), 138-142.
19. Bothe, D.; Sternich, C.; Warnecke, H. J., Fluid mixing in a T-shaped micro-mixer. Chem. Eng. Sci. 2006, 61 (9), 2950-2958.
20. Terry, S. C.; Jerman, J. H.; Angell, J.B. , A gas chromatographic air analyzer fabricated on a silicon wafer. Electron Devices, IEEE Transactions 1979, (12), 1880 - 1886
21. Shuichi Shoji,; Masayoshi Esashi,; Tadayuki Matsuo, Prototype miniature blood gas analyser fabricated on a silicon wafer. Sensors and Actuators 1988, 14 (2), 101-107.
22. Vanlintel; Vandepol; Bouwstra, A Piezoelectric Micropump Based on Micromachining of Silicon. Sensors and Actuators 1988, 15 (2), 153-167.
23. Gass, V.; Vanderschoot, B. H.; Jeanneret, S.; Derooij, N. F., Integrated Flow-Regulated Silicon Micropump. Sensor Actuat A-Phys 1994, 43 (1-3), 335-338.
24. Laser, D. J.; Santiago, J. G., A review of micropumps. J. Micromech Microeng 2004, 14 (6), R35-R64.
25. Thorsen, T.; Maerkl, S. J.; Quake, S. R., Microfluidic large-scale integration. Science 2002, 298 (5593), 580-584.
26. Daw, R.; Finkelstein, J., Lab on a chip. Nature 2006, 442 (7101), 367-367.
27. Hogan, J., Lab on a chip: A little goes a long way. Nature 2006, 442 (7101), 351-352.
28. Haeberle, S.; Zengerle, R., Microfluidic platforms for lab-on-a-chip applications. Lab Chip 2007, 7 (9), 1094-1110.
29. Shim, J. U.; Cristobal, G.; Link, D. R.; Thorsen, T.; Fraden, S., Using microfluidics to decouple nucleation and growth of protein crystals. Cryst Growth Des 2007, 7 (11), 2192-2194.
30. Dhouib, K.; Malek, C. K.; Pfleging, W.; Gauthier-Manuel, B.; Duffait, R.; Thuillier, G.; Ferrigno, R.; Jacquamet, L.; Ohana, J.; Ferrer, J. L.; Theobald-Dietrich, A.; Giege, R.; Lorber, B.; Sauter, C., Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab Chip 2009, 9 (10), 1412-1421.
31. Moulton, B.; Zaworotko, M. J., From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 2001, 101 (6), 1629-1658.
32. Kahr, B., Crystal engineering in kindergarten. Cryst Growth Des 2004, 4 (1), 3-9.
33. Dirksen, J. A.; Ring, T. A., Fundamentals of Crystallization - Kinetic Effects on Particle-Size Distributions and Morphology. Chem. Eng. Sci. 1991, 46 (10), 2389-2427.
34. Horn, D.; Rieger, J., Organic nanoparticles in the aqueous phase - theory, experiment, and use. Angew. Chem. Int. Edit. 2001, 40 (23), 4331-4361.
35. Lamer, V. K.; Dinegar, R. H., Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J Am Chem Soc 1950, 72 (11), 4847-4854.
36. Acheson, D. J., Elementary Fluid Dynamics. Clarendon Press: Oxford, 1990.
37. Selimovic, S.; Jia, Y. W.; Fraden, S., Measuring the Nucleation Rate of Lysozyme using Microfluidics. Cryst Growth Des 2009, 9 (4), 1806-1810.
38. Du, W. B.; Li, L.; Nichols, K. P.; Ismagilov, R. F., SlipChip. Lab Chip 2009, 9 (16), 2286-2292.
39. Hu, H. L.; Suen, M. C.; Yeh, C. W.; Chen, J. D., Synthesis and structures of two new copper(II) coordination polymers with pyridyl ligands. Polyhedron 2005, 24 (12), 1497-1502.
40. Goforth, A. M.; Gerth, K.; Smith, M. D.; Shotwell, S.; Bunz, U. H. F.; zur Loye, H. C., Channel-containing structures generated from linear coordination polymer chains containing N,N '-bidentate ligands and Cu-Cu dimetal units. Solid State Sci. 2005, 7 (9), 1083-1095.
41. Carballo, R.; Covelo, B.; El Fallah, M. S.; Ribas, J.; Vazquez-Lopez, E. M., Supramolecular architectures and magnetic behavior of coordination polymers from copper(II) carboxylates and 1,2-bis(4-pyridyl)ethane as a flexible bridging ligand. Cryst Growth Des 2007, 7 (6), 1069-1077.
42. Carlucci, L.; Ciani, G.; Proserpio, D. M.; Rizzato, S., New examples of self-catenation in two three-dimensional polymeric co-ordination networks. J. Chem. Soc. Dalton. 2000, (21), 3821-3827.