研究生: |
葉雅玲 Ye, Ya-Ling |
---|---|
論文名稱: |
Study of Candida albicans Hap43 and CCAAT-binding complex in iron homeostasis 白色念珠菌Hap43及CCAAT-結合複合物參與鐵平衡之研究 |
指導教授: |
藍忠昱
Lan, Chung-Yu |
口試委員: |
高茂傑
楊程堯 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 白色念珠菌 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Candida albicans is an opportunistic pathogen, which is a part of normal flora (commensal) in healthy individuals and can become invasive in immunocompromised patients with a 44% mortality rate. Iron is a significant cofactor for many enzymes that are essential for cellular functions both in human and C. albicans. Iron uptake during infection is thus considered as a virulence contributor to this fungus. In the previous study, we found that C. albicans Hap43 is essential for its growth under the low-iron condition which mimics the environment within the host. Deletion of HAP43 also attenuates the virulence of C. albicans in a mouse model of infection. In this study, we further characterized the functional domains of Hap43 to understand the molecular mechanism of iron-responsive gene regulation by Hap43. In silico domain prediction and sequence alignment of Hap43 showed that Hap43 contains a CCAAT-binding complex (CBC) binding domain (CBD), a bZIP domain, a NES peptide, a NLS peptide, and three cysteine-rich domains. The putative CBD and bZIP domains are both demonstrated to be essential for Hap43 normal function. We also proved that Hap43 possesses a C-terminal repression domain critical for gene repression in response to iron limitation. In addition, we displayed that the activity of the repression domain is regulated by a regulatory domain (RD) which is located between the two cysteine-rich domains. Furthermore, we provided the evidences that Hap43 cooperates with CBC to repress the gene expression and mediate the flavinogenesis under the low-iron condition. Together, CBC has general biological functions, while Hap43 functions mainly in the iron-limited condition.
Aisen, P., Leibman, A., and Zweier, J. (1978). Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253, 1930-1937.
Akins, R.A. (2005). An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43, 285-318.
Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2005). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.
Askwith, C., Eide, D., Van Ho, A., Bernard, P.S., Li, L., Davis-Kaplan, S., Sipe, D.M., and Kaplan, J. (1994). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403-410.
Baek, Y.U., Li, M., and Davis, D.A. (2008). Candida albicans Ferric Reductases Are Differentially Regulated in Response to Distinct Forms of Iron Limitation by the Rim101 and CBF Transcription Factors. Eukaryotic Cell 7, 1168-1179.
Barluzzi, R., Saleppico, S., Nocentini, A., Boelaert, J.R., Neglia, R., Bistoni, F., and Blasi, E. (2002). Iron overload exacerbates experimental meningoencephalitis by Cryptococcus neoformans. J Neuroimmunol 132, 140-146.
Bergh, K.T., Litzka, O., and Brakhage, A.A. (1996). Identification of a major cis-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans. J Bacteriol 178, 3908-3916.
Brakhage, A.A., Andrianopoulos, A., Kato, M., Steidl, S., Davis, M.A., Tsukagoshi, N., and Hynes, M.J. (1999). HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet Biol 27, 243-252.
Bucher, P. (1990). Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 212, 563-578.
Bullen, J.J., Rogers, H.J., Spalding, P.B., and Ward, C.G. (2005). Iron and infection: the heart of the matter. FEMS Immunol Med Microbiol 43, 325-330.
Buschlen, S., Amillet, J.M., Guiard, B., Fournier, A., Marcireau, C., and Bolotin-Fukuhara, M. (2003). The S. cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression. Comparative and Functional Genomics 4, 37-46.
Chaffin, W.L., Lopez-Ribot, J.L., Casanova, M., Gozalbo, D., and Martinez, J.P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62, 130-180.
Chen, C., Pande, K., French, Sarah D., Tuch, Brian B., and Noble, Suzanne M. (2011). An Iron Homeostasis Regulatory Circuit with Reciprocal Roles in Candida albicans Commensalism and Pathogenesis. Cell Host & Microbe 10, 118-135.
Chen, H., Crabb, J.W., and Kinsey, J.A. (1998). The Neurospora aab-1 gene encodes a CCAAT binding protein homologous to yeast HAP5. Genetics 148, 123-130.
Chen, H., and Kinsey, J.A. (1995). Purification of a heteromeric CCAAT binding protein from Neurospora crassa. Mol Gen Genet 249, 301-308.
Conde-Rosa, A., Amador, R., Perez-Torres, D., Colon, E., Sanchez-Rivera, C., Nieves-Plaza, M., Gonzalez-Ramos, M., and Bertran-Pasarell, J. (2010). Candidemia distribution, associated risk factors, and attributed mortality at a university-based medical center. P R Health Sci J 29, 26-29.
Copenhaver, G.P., Homann, O.R., Dea, J., Noble, S.M., and Johnson, A.D. (2009). A Phenotypic Profile of the Candida albicans Regulatory Network. PLoS Genetics 5, e1000783.
Coustry, F., Maity, S.N., Sinha, S., and de Crombrugghe, B. (1996). The transcriptional activity of the CCAAT-binding factor CBF is mediated by two distinct activation domains, one in the CBF-B subunit and the other in the CBF-C subunit. J Biol Chem 271, 14485-14491.
Dang, V.D., Bohn, C., Bolotin-Fukuhara, M., and Daignan-Fornier, B. (1996). The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol 178, 1842-1849.
Drakesmith, H., and Prentice, A. (2008). Viral infection and iron metabolism. Nature Reviews Microbiology 6, 541-552.
Eck, R., Hundt, S., Hartl, A., Roemer, E., and Kunkel, W. (1999). A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology 145 ( Pt 9), 2415-2422.
Edmond, M.B., Wallace, S.E., McClish, D.K., Pfaller, M.A., Jones, R.N., and Wenzel, R.P. (1999). Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29, 239-244.
Edwards, D., Murray, J.A., and Smith, A.G. (1998). Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol 117, 1015-1022.
Eisendle, M., Oberegger, H., Zadra, I., and Haas, H. (2003). The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Molecular Microbiology 49, 359-375.
Fedorovich, D., Protchenko, O., and Lesuisse, E. (1999). Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes. BioMetals 12, 295-300.
Fingar, D.C., and Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151-3171.
Forsburg, S.L., and Guarente, L. (1989). Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 3, 1166-1178.
Furuyama, K., Kaneko, K., and Vargas, P.D. (2007). Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med 213, 1-16.
Gale, C.A., Bendel, C.M., McClellan, M., Hauser, M., Becker, J.M., Berman, J., and Hostetter, M.K. (1998). Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279, 1355-1358.
Ghannoum, M.A. (2000). Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13, 122-143, table of contents.
Gillum, A.M., Tsay, E.Y., and Kirsch, D.R. (1984). Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179-182.
Halliwell, B., and Gutteridge, J.M. (1992). Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307, 108-112.
Hammacott, J.E., Williams, P.H., and Cashmore, A.M. (2000). Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Microbiology 146 ( Pt 4), 869-876.
Heymann, P., Gerads, M., Schaller, M., Dromer, F., Winkelmann, G., and Ernst, J.F. (2002). The Siderophore Iron Transporter of Candida albicans (Sit1p/Arn1p) Mediates Uptake of Ferrichrome-Type Siderophores and Is Required for Epithelial Invasion. Infection and Immunity 70, 5246-5255.
Higa, A., Miyamoto, E., Rahman, L., and Kitamura, Y. (2008). Root tip-dependent, active riboflavin secretion by Hyoscyamus albus hairy roots under iron deficiency. Plant Physiology and Biochemistry 46, 452-460.
Hortschansky, P., Eisendle, M., Al-Abdallah, Q., Schmidt, A.D., Bergmann, S., Thon, M., Kniemeyer, O., Abt, B., Seeber, B., Werner, E.R., et al. (2007). Interaction of HapX with the CCAAT-binding complex--a novel mechanism of gene regulation by iron. EMBO J 26, 3157-3168.
Hsu, P.C., Yang, C.Y., and Lan, C.Y. (2011). Candida albicans Hap43 Is a Low Iron-Induced Repressor Essential for Iron-Responsive Transcriptional Regulation and Virulence. Eukaryot Cell.
Hu, C.J. (2002). Characterization and Functional Analysis of the Siderophore-Iron Transporter CaArn1p in Candida albicans. Journal of Biological Chemistry 277, 30598-30605.
Johnson, D.C., Cano, K.E., Kroger, E.C., and McNabb, D.S. (2005). Novel Regulatory Function for the CCAAT-Binding Factor in Candida albicans. Eukaryotic Cell 4, 1662-1676.
Jung, W.H., and Kronstad, J.W. (2007). Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cellular Microbiology 10, 277-284.
Kang, D.K. (2003). Iron Regulatory Protein 2 as Iron Sensor. IRON-DEPENDENT OXIDATIVE MODIFICATION OF CYSTEINE. Journal of Biological Chemistry 278, 14857-14864.
Kato, M., Aoyama, A., Naruse, F., Kobayashi, T., and Tsukagoshi, N. (1997). An Aspergillus nidulans nuclear protein, AnCP, involved in enhancement of Taka-amylase A gene expression, binds to the CCAAT-containing taaG2, amdS, and gatA promoters. Mol Gen Genet 254, 119-126.
Knight, S.A., Lesuisse, E., Stearman, R., Klausner, R.D., and Dancis, A. (2002). Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology 148, 29-40.
Kosman, D.J. (2003). Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47, 1185-1197.
Labbé, S., Pelletier, B., and Mercier, A. (2007). Iron homeostasis in the fission yeast Schizosaccharomyces pombe. BioMetals 20, 523-537.
Lan, C.-Y., Rodarte, G., Murillo, L.A., Jones, T., Davis, R.W., Dungan, J., Newport, G., and Agabian, N. (2004). Regulatory networks affected by iron availability in Candida albicans. Molecular Microbiology 53, 1451-1469.
Lesuisse, E., Blaiseau, P.L., Dancis, A., and Camadro, J.M. (2001). Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology 147, 289-298.
Li, Q., Herrler, M., Landsberger, N., Kaludov, N., Ogryzko, V.V., Nakatani, Y., and Wolffe, A.P. (1998). Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J 17, 6300-6315.
Lo, H.J., Kohler, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. (1997). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949.
Lodi, T., Goffrini, P., Bolondi, I., and Ferrero, I. (1998). Transcriptional regulation of the KlDLD gene, encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase in Kluyveromyces lactis: effect of Klhap2 and fog mutations. Curr Genet 34, 12-20.
Maity, S.N., and de Crombrugghe, B. (1998). Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci 23, 174-178.
Mantovani, R. (1999). The molecular biology of the CCAAT-binding factor NF-Y. Gene 239, 15-27.
Martins, L.J., Jensen, L.T., Simon, J.R., Keller, G.L., and Winge, D.R. (1998). Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273, 23716-23721.
McNabb, D.S., and Pinto, I. (2005). Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA Complex in Saccharomyces cerevisiae. Eukaryotic Cell 4, 1829-1839.
McNabb, D.S., Tseng, K.A., and Guarente, L. (1997). The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor. Mol Cell Biol 17, 7008-7018.
McNabb, D.S., Xing, Y., and Guarente, L. (1995). Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 9, 47-58.
Mercier, A., Watt, S., Bahler, J., and Labbe, S. (2008). Key Function for the CCAAT-Binding Factor Php4 To Regulate Gene Expression in Response to Iron Deficiency in Fission Yeast. Eukaryotic Cell 7, 493-508.
Moors, M.A., Stull, T.L., Blank, K.J., Buckley, H.R., and Mosser, D.M. (1992). A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med 175, 1643-1651.
Neilands, J.B. (1995). Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270, 26723-26726.
Nordlund, P., and Reichard, P. (2006). Ribonucleotide reductases. Annu Rev Biochem 75, 681-706.
Olesen, J.T., Fikes, J.D., and Guarente, L. (1991). The Schizosaccharomyces pombe homolog of Saccharomyces cerevisiae HAP2 reveals selective and stringent conservation of the small essential core protein domain. Mol Cell Biol 11, 611-619.
Ong, S., Shanho, J., Ho, B., and Ding, J. (2006). Iron-withholding strategy in innate immunity. Immunobiology 211, 295-314.
Papadopoulos, J.S., and Agarwala, R. (2007). COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073-1079.
Pendrak, M.L. (2003). Heme Oxygenase in Candida albicans Is Regulated by Hemoglobin and Is Necessary for Metabolism of Exogenous Heme and Hemoglobin to alpha-Biliverdin. Journal of Biological Chemistry 279, 3426-3433.
Philpott, C.C., and Protchenko, O. (2007). Response to Iron Deprivation in Saccharomyces cerevisiae. Eukaryotic Cell 7, 20-27.
Puig, S., Askeland, E., and Thiele, D.J. (2005). Coordinated Remodeling of Cellular Metabolism during Iron Deficiency through Targeted mRNA Degradation. Cell 120, 99-110.
Puig, S., Vergara, S.V., and Thiele, D.J. (2008). Cooperation of Two mRNA-Binding Proteins Drives Metabolic Adaptation to Iron Deficiency. Cell Metabolism 7, 555-564.
Ramanan, N. (2000). A High-Affinity Iron Permease Essential for Candida albicans Virulence. Science 288, 1062-1064.
Ratledge, C., and Dover, L.G. (2000). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54, 881-941.
Reinke, A., Chen, J.C.Y., Aronova, S., and Powers, T. (2006). Caffeine Targets TOR Complex I and Provides Evidence for a Regulatory Link between the FRB and Kinase Domains of Tor1p. Journal of Biological Chemistry 281, 31616-31626.
Reuss, O., Vik, A., Kolter, R., and Morschhauser, J. (2004). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119-127.
Riego, L., Avendano, A., DeLuna, A., Rodriguez, E., and Gonzalez, A. (2002). GDH1 expression is regulated by GLN3, GCN4, and HAP4 under respiratory growth. Biochem Biophys Res Commun 293, 79-85.
Ruan, S.Y., and Hsueh, P.R. (2009). Invasive candidiasis: an overview from Taiwan. J Formos Med Assoc 108, 443-451.
Rupp, S. (2002). LacZ assays in yeast. Methods Enzymol 350, 112-131.
Russell, C.L., and Brown, A.J. (2005). Expression of one-hybrid fusions with Staphylococcus aureus lexA in Candida albicans confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genet Biol 42, 676-683.
Rutherford, J.C. (2001). A second iron-regulatory system in yeast independent of Aft1p. Proceedings of the National Academy of Sciences 98, 14322-14327.
Rutherford, J.C. (2003). Aft1p and Aft2p Mediate Iron-responsive Gene Expression in Yeast through Related Promoter Elements. Journal of Biological Chemistry 278, 27636-27643.
Sanglard, D., Hube, B., Monod, M., Odds, F.C., and Gow, N.A. (1997). A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65, 3539-3546.
Santos, R. (2003). Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 149, 579-588.
Schaible, U.E., and Kaufmann, S.H.E. (2004). Iron and microbial infection. Nature Reviews Microbiology 2, 946-953.
Schaller, M., Borelli, C., Korting, H.C., and Hube, B. (2005). Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48, 365-377.
Schrettl, M. (2004). Siderophore Biosynthesis But Not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence. Journal of Experimental Medicine 200, 1213-1219.
Schrettl, M., Beckmann, N., Varga, J., Heinekamp, T., Jacobsen, I.D., Jöchl, C., Moussa, T.A., Wang, S., Gsaller, F., Blatzer, M., et al. (2010). HapX-Mediated Adaption to Iron Starvation Is Crucial for Virulence of Aspergillus fumigatus. PLoS Pathogens 6, e1001124.
Schrettl, M., Winkelmann, G., and Haas, H. (2004). Ferrichrome in Schizosaccharomyces pombe--an iron transport and iron storage compound. BioMetals 17, 647-654.
Schuller, H.J. (2003). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43, 139-160.
Shakoury-Elizeh, M., Protchenko, O., Berger, A., Cox, J., Gable, K., Dunn, T.M., Prinz, W.A., Bard, M., and Philpott, C.C. (2010). Metabolic Response to Iron Deficiency in Saccharomyces cerevisiae. Journal of Biological Chemistry 285, 14823-14833.
Sheftel, A., Stehling, O., and Lill, R. (2010). Iron–sulfur proteins in health and disease. Trends in Endocrinology & Metabolism 21, 302-314.
Singh, A., Kaur, N., and Kosman, D.J. (2007). The Metalloreductase Fre6p in Fe-Efflux from the Yeast Vacuole. Journal of Biological Chemistry 282, 28619-28626.
Singh, R.P., Prasad, H.K., Sinha, I., Agarwal, N., and Natarajan, K. (2011). Cap2/HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol Chem.
Stearman, R., Yuan, D.S., Yamaguchi-Iwai, Y., Klausner, R.D., and Dancis, A. (1996). A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552-1557.
Stynen, B., Van Dijck, P., and Tournu, H. (2010). A CUG codon adapted two-hybrid system for the pathogenic fungus Candida albicans. Nucleic Acids Research 38, e184-e184.
Sudbery, P., Gow, N., and Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends in Microbiology 12, 317-324.
Tanaka, A., Kato, M., Hashimoto, H., Kamei, K., Naruse, F., Papagiannopoulos, P., Davis, M.A., Hynes, M.J., Kobayashi, T., and Tsukagoshi, N. (2000). An Aspergillus oryzae CCAAT-binding protein, AoCP, is involved in the high-level expression of the Taka-amylase A gene. Curr Genet 37, 380-387.
Urbanowski, J.L., and Piper, R.C. (1999). The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem 274, 38061-38070.
Vartivarian, S.E., Anaissie, E.J., Cowart, R.E., Sprigg, H.A., Tingler, M.J., and Jacobson, E.S. (1993). Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis 167, 186-190.
Vinson, C., Acharya, A., and Taparowsky, E.J. (2006). Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1759, 4-12.
Weissman, Z., and Kornitzer, D. (2004). A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Molecular Microbiology 53, 1209-1220.
Weissman, Z., Shemer, R., Conibear, E., and Kornitzer, D. (2008). An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Molecular Microbiology 69, 201-217.
Weissman, Z., Shemer, R., and Kornitzer, D. (2002). Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol 44, 1551-1560.
Whiteway, M., and Oberholzer, U. (2004). Candida morphogenesis and host-pathogen interactions. Current Opinion in Microbiology 7, 350-357.
Yamaguchi-Iwai, Y. (2002). Subcellular Localization of Aft1 Transcription Factor Responds to Iron Status in Saccharomyces cerevisiae. Journal of Biological Chemistry 277, 18914-18918.
Yamaguchi-Iwai, Y., Dancis, A., and Klausner, R.D. (1995). AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14, 1231-1239.
Yuan, D.S., Dancis, A., and Klausner, R.D. (1997). Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J Biol Chem 272, 25787-25793.
Yun, C.W. (2000). Siderophore-Iron Uptake in Saccharomyces cerevisiae. IDENTIFICATION OF FERRICHROME AND FUSARININE TRANSPORTERS. Journal of Biological Chemistry 275, 16354-16359.
Yun, C.W., Ferea, T., Rashford, J., Ardon, O., Brown, P.O., Botstein, D., Kaplan, J., and Philpott, C.C. (2000). Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem 275, 10709-10715.
Zaas, A.K., Aziz, H., Lucas, J., Perfect, J.R., and Ginsburg, G.S. (2010). Blood Gene Expression Signatures Predict Invasive Candidiasis. Science Translational Medicine 2, 21ra17-21ra17.
Zeilinger, S., Ebner, A., Marosits, T., Mach, R., and Kubicek, C.P. (2001). The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Genet Genomics 266, 56-63.
Zitomer, R.S., and Lowry, C.V. (1992). Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev 56, 1-11.