簡易檢索 / 詳目顯示

研究生: 吳易軒
Wu, I-Hsuan
論文名稱: 硫化鉛量子點之合成與其在紅外光量子點的應用探討
Synthesis of PbS based Quantum Dots and Their Applications in Infrared Light Emitting Diodes
指導教授: 陳學仕
Chen, Hsueh-Shih
口試委員: 張守一
Chang, Shou-Yi
賴志煌
Lai, Chih-Huang
洪瑞華
Horng, Ray-Hua
陳學仕
Chen, Hsueh-Shih
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 89
中文關鍵詞: 量子點硫化鉛硫化鉛-硫化鎘核殼結構發光二極體
外文關鍵詞: quantum dot, PbS, PbS/CdS, core/shell, light emitting diodes
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫化鉛量子點為紅外光的半導體發光材料,由於他的吸收及放光波長為可調整的,因此可被應用在許多領域,例如太陽能電池、生物標記及紅外光發光二極體。在本篇研究中,硫化鉛量子點透過濕式製程的方式合成藉以製作紅外光發光二極體。然而,如果我們直接將硫化鉛量子點製備發光二極體,其效能如亮度和穩定性將低於預期。因此,我們使用陽離子交換法來優化量子點,藉由殼層的鈍化,使其效能獲得提升。硫化鉛的量子點的吸光波長可被控制在820至1560奈米,其尺寸為3.6至6.8奈米。基於這些可控制尺寸的硫化鉛量子點,硫化鎘的殼層將被成長在硫化鉛表面,由於陽離子交換法的緣故,硫化鉛量子點將會在長殼過程中逐漸變小,硫化鎘的厚度將逐漸增加。本研究將透過不同的陽離子交換法的溫度,探討此參數對於量子點性質的影響,當溫度越高時,殼層厚度會增加,量子效率亦會隨之上升,但若溫度太高時,硫化鉛-硫化鎘的核殼結構將會變得更為不均質,且量子效率會變更低。但若陽離子交換法的溫度為恰當時,將會有最高的量子效率59%,以此量子點作為紅外光發光二極體後,可以發現其亮度以及穩定性可以獲得顯著的提升。


    Colloidal PbS quantum dots (QDs) are infrared light emitting semiconductor materials, which can be applied in many fields, such as solar cells, biological fluorescence labeling and IR LEDs due to their tunable absorption and luminescence wavelength. In this work, we synthesize PbS QDs by wet chemical method and use these QDs to fabricate IR LEDs. However, if we directly use the as synthesized PbS QDs to fabricate IR LED, the performance such as the stability is below expectation. Thus, we use cation exchange process to enhance the efficiency of QDs and IR LEDs. The peaks in the absorption spectra of PbS shell free QDs can be tuned from 820 to 1560 nm, with an estimated size ranging from 3.6 to 6.8 nm. Based on PbS QDs, a CdS shell is grown at desired temperature through cation exchange process, which lead to a smaller PbS quantum dots as the CdS shell is grown. As the cation exchange temperature increases, we can obtain PbS/CdS core/shell QDs with thicker CdS shell. However, if the shelling temperature is too high, the shell of PbS/CdS QDs will be heterogeneous and the quantum yield (QY) will be lowered. If the thickness of CdS shell is appropriate, PbS/CdS QDs will have the highest QY of 59%. And we use these PbS based QDs to fabricate IR LEDs and had found that the stability was significantly improved after we used these shelling QDs.

    Abstract 2 誌謝 3 Chapter 1. Introduction 8 Chapter 2. Literature Review 9 2.1 Characterization of Quantum dots (QDs) 9 2.2 Synthetic route of PbS QDs 11 2.2.1 Synthetic route – Hines method 11 2.2.2 Synthetic route – Cademartiri method 11 2.2.3 Synthetic route – Hendricks method 12 2.3 Synthetic route of PbS/CdS core/shell QDs 16 Cation exchange method 16 2.4 Surface chemistry of PbS QDs 19 2.5 IR LEDs based on QDs 23 Chapter 3. Experimental 25 3.1 Synthesis of QDs 25 3.1.1 Synthesis of PbS QDs – Hines method 25 3.1.2 Synthesis of PbS QDs – Cademartiri method 26 3.1.3 Synthesis of PbS QDs – Hendricks method 27 3.1.4 Synthesis of PbS/CdS core/shell QDs 28 3.2 Fabrication of QD films 29 3.3 Fabrication of IR LEDs 30 3.4 Stability test of PbS based IR-LEDs 30 3.5 Characterization and Instruments 31 3.5.1 Optical Characterization 31 3.5.2 X-ray diffraction (XRD) 31 3.5.3 Transmission electron microscopy (TEM) 32 3.5.4 Fourier-transform infrared spectroscopy (FTIR) 33 3.5.5 X-ray photoelectron spectrometer (XPS) 33 Chapter 4. Results and Discussion 35 4.1.1 Synthesis and optical properties of shell free PbS QDs 35 4.1.2 Crystal structure of shell free PbS QDs 36 4.1.3 Morphology of shell free PbS QDs 38 4.1.4 Air-stability of shell free PbS QDs 41 4.1.5 Tunable wavelength of shell free PbS QDs 43 4.1.6 Surface chemistry of as-synthesized shell free PbS QDs 47 4.2 IR-LED fabricated by shell free PbS QDs 58 4.3.1 Synthesis and optical properties of PbS/CdS core/shell QDs 61 4.3.2 Crystal structure of PbS/CdS core/shell QDs 64 4.3.3 Microstructure of PbS/CdS core/shell QDs 68 4.3.4 Schematic of PbS/CdS QDs synthesized by low and high temperature 69 4.3.5 Surface chemistry of PbS/CdS core/shell QDs 70 FTIR spectra of PbS/CdS QDs 70 XPS spectra of PbS/CdS QDs 71 4.3.6 Schematic surface of PbS/CdS QDs 80 4.4 IR-LED fabricated by PbS/CdS core/shell QDs 82 Chapter 5. Conclusions 86 References 87

    [1] A. P. Alivisatos, Sci., 1996, 271, 933-937.
    [2] X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc., 1997, 119, 7019-7029.
    [3] M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, J. Am. Chem. Soc., 2012, 134, 2457-2460.
    [4] M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem., 1996, 100, 468-471.
    [5] L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, Phys. Chem. Chem. Phys., 2014, 16, 736-742.
    [6] S. Haubold, M. Haase, A. Kornowski, and H. Weller, ChemPhysChem, 2001, 2, 331-334.
    [7] V. Biju, T. Itoh, A. Anas, A. Sujith, and M. Ishikawa, Anal. Bioanal. Chem., 2008, 391, 2469-2495.
    [8] P. Reiss, M. Protiere, and L. Li, Small, 2009, 5, 154-168.
    [9] C. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706-8715.
    [10] Z. A. Peng and X. Peng, J. Am. Chem. Soc., 2001, 123, 183-184.
    [11] Y. F. Liu and J.-S. Yu, J. Colloid Interface Sci., 2009, 333, 690-698.
    [12] H. Li, W. Y. Shih, and W. H. Shih, Nanotechnology, 2007, 18, 205604.
    [13] B. B. Srivastava, S. Jana, N. S. Karan, S. Paria, N. R. Jana, D. Sarma, and N. Pradhan, J. Phys. Chem. Lett., 2010, 1, 1454-1458.
    [14] Z. Fang, Y. Li, H. Zhang, X. Zhong, and L. Zhu, J. Phys. Chem. C, 2009, 113, 14145-14150.
    [15] S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, Chem. Mater., 2016, 28, 2491-2506.
    [16] D. Dupont, M. D. Tessier, P. F. Smet, and Z. Hens, Adv. Mater., 2017, 29, 1700686.
    [17] D. Franke, D. K. Harris, O. Chen, O. T. Bruns, J. A. Carr, M. W. Wilson, and M. G. Bawendi, Nat. Commun., 2016, 7, 12749.
    [18] R. Xie and X. Peng, Angew. Chem. Int. Edit., 2008, 47, 7677-7680.
    [19] W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, Chem. Mater., 2004, 16, 3318-3322.
    [20] R. K. Čapek, D. Yanover, and E. Lifshitz, Nanoscale, 2015, 7, 5299-5310.
    [21] S. Zhou, Z. Liu, Y. Wang, K. Lu, F. Yang, M. Gu, Y. Xu, S. Chen, X. Ling, Y. Zhang, F. Li, J. Yuan, and W. Ma, J. Mater. Chem. C, 2019, 7, 1575-1583.
    [22] Y. Jiao, X. Gao, J. Lu, Y. Chen, J. Zhou, and X. Li, Mater. Let., 2012, 72, 116-118.
    [23] M. Cardona and D. L. Greenaway, Phys. Rev., 1964, 133, A1685.
    [24] J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, Phys. Rev. B, 1993, 48, 2819.
    [25] C. H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, Nat. Mater., 2014, 13, 796.
    [26] N. Zhao, T. P. Osedach, L. Y. Chang, S. M. Geyer, D. Wanger, M. T. Binda, A. C. Arango, M. G. Bawendi, and V. Bulovic, ACS nano, 2010, 4, 3743-3752.
    [27] J. Han, S. Luo, X. Yin, Y. Zhou, H. Nan, J. Li, et al., Small, 2018, 14, 1801016.
    [28] J. Tian, T. Shen, X. Liu, C. Fei, L. Lv, and G. Cao, Sci. Rep., 2016, 6, 23094.
    [29] W. Hu, R. Henderson, Y. Zhang, G. You, L. Wei, Y. Bai, J. Wang, and J. Xu, Nanotechnology, 2012, 23, 375202.
    [30] L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, Nat. Nanotechnol., 2012, 7, 369-373.
    [31] G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulovic, Adv. Mater., 2015, 27, 1437-1442.
    [32] L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, RSC Adv., 2015, 5, 54109-54114.
    [33] Y. Wang, X. Bai, T. Wang, L. Yan, T. Zhang, Y. Zhang, and W. W. Yu, Nanotechnology, 2017, 28, 215703.
    [34] L. Yan, Y. Zhang, T. Zhang, Y. Feng, K. Zhu, D. Wang, T. Cui, J. Yin, Y. Wang, and W. W. Yu, Anal. Chem., 2014, 86, 11312-11318.
    [35] S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. Klem, L. Levina, and E. H. Sargent, Nat. Mater., 2005, 4, 138.
    [36] M. A. Hines and G. D. Scholes, Adv. Mater., 2003, 15, 1844-1849.
    [37] J. W. Lee, D. Y. Kim, S. Baek, H. Yu, and F. So, Small, 2016, 12, 1328-1333.
    [38] L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. Von Freymann, and G. A. Ozin, J. Phys. Chem. B, 2006, 110, 671-673.
    [39] S. Brittman, A. E. Colbert, T. H. Brintlinger, P. D. Cunningham, M. H. Stewart, W. B. Heuer, R. M. Stroud, J. G. Tischler, and J. E. Boercker, J. Phys. Chem. Lett., 2019, 10, 1914-1918.
    [40] I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, ACS nano, 2009, 3, 3023-3030.
    [41] L. Cademartiri and G. A. Ozin, Philos. T. Roy. Soc. A, 2010, 368, 4229-4248.
    [42] D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L. W. Wang, Sci., 2014, 344, 1380-1384.
    [43] I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, ACS nano, 2011, 5, 2004-2012.
    [44] M. C. Weidman, M. E. Beck, R. S. Hoffman, F. Prins, and W. A. Tisdale, ACS nano, 2014, 8, 6363-6371.
    [45] M. P. Hendricks, M. P. Campos, G. T. Cleveland, I. Jen-La Plante, and J. S. Owen, Sci., 2015, 348, 1226-1230.
    [46] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, Nano letters, 2001, 1, 207-211.
    [47] J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc., 2008, 130, 4879-4885.
    [48] Z. Fan, L.-C. Lin, W. Buijs, T. J. Vlugt, and M. A. Van Huis, Nat. Commun., 2016, 7, 11503.
    [49] H. Zhao, M. Chaker, N. Wu, and D. Ma, J. Mater. Chem., 2011, 21, 8898-8904.
    [50] E. G. Durmusoglu, M. M. Yildizhan, M. A. Gulgun, and H. Yagci Acar, J. Phys. Chem. C, 2017, 121, 25520-25530.
    [51] G. Wul, Z. Kristallogr, 1901, 34, 449-530.
    [52] X. Tian, T. Wang, L. Fan, Y. Wang, H. Lu, and Y. Mu, Appl. Surf. Sci., 2018, 427, 357-362.
    [53] F. Jiang, L. Yang, D. Zhou, G. He, J. Zhou, F. Wang, and Z. G. Chen, Appl. Surf. Sci., 2018, 436, 989-994.
    [54] H. Beygi, S. A. Sajjadi, A. Babakhani, J. F. Young, and F. C. van Veggel, Appl. Surf. Sci., 2018, 457, 1-10.
    [55] H. Choi, J.-H. Ko, Y.-H. Kim, and S. Jeong, J. Am. Chem. Soc., 2013, 135, 5278-5281.
    [56] R. Grisorio, D. Debellis, G. P. Suranna, G. Gigli, and C. Giansante, Angew. Chem. Int. Edit., 2016, 55, 6628-6633.
    [57] Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Y. William, J. Nanopart. Res., 2011, 13, 3721-3729.
    [58] C. Javaux, B. Mahler, B. Dubertret, A. Shabaev, A. V. Rodina, A. L. Efros, D. R. Yakovlev, F. Liu, M. Bayer, G. Camps, L, Biadala, S. Buil, X. Quelin, and J. P. Hermier, Nat. nanotechnol., 2013, 8, 206.
    [59] Y. S. Park, W. K. Bae, L. A. Padilha, J. M. Pietryga, and V. I. Klimov, Nano letters, 2014, 14, 396-402.
    [60] A. Leach, L. Mast, E. Hernandez-Pagan, and J. Macdonald, J. Mater. Chem. C, 2015, 3, 3258-3265.
    [61] A. Aharoni, D. Oron, U. Banin, E. Rabani, and J. Jortner, Phys. Rev. Lett., 2008, 100, 057404.
    [62] S. Mourdikoudis and L. M. Liz-Marzan, Chem. Mater., 2013, 25, 1465-1476.
    [63] W. Premaratne, W. Priyadarshana, S. Gunawardena, and A. De Alwis, 2013.
    [64] J. Zhang, J. Gao, E. M. Miller, J. M. Luther, and M. C. Beard, ACS nano, 2013, 8, 614-622.
    [65] G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, Nano Lett., 2008, 8, 1446-1450.
    [66] H. Zhao, D. Wang, T. Zhang, M. Chaker, and D. Ma, Chem. Commun., 2010, 46, 5301-5303.
    [67] H. Zhao, L. Jin, Y. Zhou, A. Bandar, Z. Fan, A. O. Govorov, Z. Mi, S. Sun, F. Rosei, and A. Vomiero, Nanotechnology, 2016, 27, 495405.
    [68] S. S. Mali, S. K. Desai, S. S. Kalagi, C. A. Betty, P. N. Bhosale, R. S. Devan, Y. R. Ma, and P. S. Patil, Dalton T., 2012, 41, 6130-6136.
    [69] R. Ihly, J. Tolentino, Y. Liu, M. Gibbs, and M. Law, ACS nano, 2011, 5, 8175-8186.
    [70] A. Narayanaswamy, L. Feiner, and P. Van Der Zaag, J. Phys. Chem. C, 2008, 112, 6775-6780.
    [71] P. W. Voorhees, J. Stat. Phys., 1985, 38, 231-252.
    [72] M. R. Ahmadian-Yazdi, F. Zabihi, M. Habibi, and M. Eslamian, Nanoscale Res. Lett., 2016, 11, 408.
    [73] P. C. Clark, H. Radtke, A. Pengpad, A. I. Williamson, B. F. Spencer, S. J. Hardman, M. A. Leontiadou, D. C. J. Neo, S. M. Fairclough, A. A. R. Watt, I. Pis, S. Nappini, F. Bondino, E. Magnano, K. Handrup, K. Schulte, M. G. Silly, F. Sirotti, W. R. Flavell, Nanoscale, 2017, 9, 6056-6067.
    [74] R. Abargues, J. Navarro, P. J. Rodríguez-Cantó, A. Maulu, J. F. Sánchez-Royo, and J. P. Martínez-Pastor, Nanoscale, 2019, 11, 1978-1987.

    QR CODE