簡易檢索 / 詳目顯示

研究生: 高逸群
Kao, Yi-Chun
論文名稱: 軟性觸控顯示器之陽極氧化鋁材料特性研究
Material Properties of Anodic Aluminum Oxide for the structure of Flexible Touch Liquid Crystal Display
指導教授: 葉孟考
Yeh, Meng-Kao
口試委員: 蔣長榮
蔡佳霖
葉孟考
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 奈米多孔性陽極氧化鋁有限單元分析楊氏模數蒲松比
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用仿原子力顯微鏡觀察奈米多孔性陽極氧化鋁薄膜,得到薄膜尺寸相關數據,藉以用來進行有限單元模擬。在模擬過程中,運用有限單元軟體ANSYS,分別進行二維和三維結構模擬分析,探討奈米多孔性薄膜因製程所導致之不同結構對其機械性質的影響。

    在二維模型中,本研究所採用的單元為Plane 42,由四個節點所組成,每個節點具有兩個位移自由度。利用有限單元分析方法,在模型的右方給予位移負載0.1奈米,對奈米多孔性結構進行模擬分析。從參數化研究中發現,隨著周期性基本單元的長寬比越高,其楊氏模數下降的幅度越大;此外,陽極氧化鋁薄膜在固定的長寬比下,其蒲松比的大小和孔隙率呈現對應增加的趨勢,而周期性基本單元 (子模型)的長寬比越接近 1時 ,其蒲松比變化越大。

    在三維全域模型中,藉由複合材料力學混合理論,計算出 Z 軸方向上之楊氏模數,並利用 ANSYS 進行驗證。此外,本研究在三維全域模型模擬中,另外模擬奈米壓痕實驗,探討壓頭對薄膜材料所施加之負載與壓痕深度之關係,藉此求得奈米壓痕實驗之楊氏模數。模擬奈米壓痕實驗過程,壓頭對薄膜材料所施加之負載與壓痕深度之關係,藉此求得Z軸方向上之楊氏係數並利用奈米壓痕實驗,量測奈米多孔性薄膜之機械性質,以驗證分析結果之可信度並希望藉由模擬結果,得到陽極氧化鋁薄膜不同的孔隙率下,其材料機械性質如楊氏模數和蒲松比,以提供進行相關研究之學者設計上之參考依據。


    摘要.................................................................................................... i 目錄.................................................................................................... ii 圖表目錄............................................................................................ iv 第一章 緒論...................................................................................... 1 1.1研究背景.............................................................................. 1 1.2文獻回顧.............................................................................. 1 1.2.1奈米多孔性結構之製備......................................... 1 1.2.2奈米多孔性結構之性質與分析............................. 2 1.2.3奈米壓痕量測實驗之應用..................................... 3 1.2.4量測表面形貌之實驗............................................. 4 1.3研究主題.............................................................................. 6 第二章 理論與分析方法…….……………………..………..... 7 2.1有限單元分析…………………………………………….. 7 2.2定義問題型態和單元選取...................…………….…...... 8 2.3二維建模和網格劃分........…………...............….…......... 10 2.4三維建模流程....................…………...............….…......... 10 2.4.1 Model 2: 平行四邊形(全域模型)............................ 11 2.4.2 Model 3: 矩形(全域模型)........................................ 11 2.5給予適當邊界條件並求解......………….........….….............12 2.5.1二維子模型.................................................................12 2.5.1三維全域模型.............................................................13 2.6複合材料力學理論應用....…………...............….….............14 第三章 實驗設備與程序…………………………………………. 16 3.1 量測奈米多孔性薄膜表面形貌及材料特性……………... 16 3.1.1利用仿原子力顯微鏡量測奈米多孔性薄膜 表面形貌............................................................ 16 3.1.2利用仿原子力顯微鏡量測奈米多孔性薄膜材 料特性.................................................................. 18 3.2 奈米壓痕實驗…….................................................………... 21 第四章 結果與討論.…………………………….…………… ...........21 4.1 量測奈米多孔性薄膜表面形貌…… …………….…..….... 21 4.2二維子模型結構分析…… ……………….…..…................. 22 4.2.1固定的長寬比下,配合不同的孔隙率,其楊氏 模數( Young's modulus)的分佈情形........................ 22 4.2.2固定的長寬比下,配合不同的孔隙率,其 蒲松比(Poisson’s ratio)的分佈情形 ....................... 23 4.3 三維全域模型結構分析…………… ……………............ 24 4.4 奈米壓痕實驗 …………… … …...…….......................... 25 4.5 陽極氧化鋁薄膜之材料勁度矩陣 ( Stiffness matrix )..... 27 第五章 結論.…………………………….…………… ................... 30 參考文獻………………………………………………………….….. 31 圖表……………………………………………………………….….. 36

    參考文獻
    1. H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures Of Anodic Alumina,” Science , Vol. 268, pp. 1466–1468, 1995.
    2. A. P. Li, F. Muller, A. Birner, K. Nielsch and U. Gosele, “Hexagonal Pore Arrays With a 50–420 Nm Interpore Distance Formed by Self-Organization in Anodic Alumina,” Journal of Applied Physics , Vol. 84, pp. 6023–6026, 1998.
    3. O. Jessensky, F. Müller and U. Gösele, “Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,” Applied Physics Letters, Vol. 72, pp. 1173-1175, 1998.
    4. S. Shingubara, K. Morimoto, H. Sakaue and T. Takahagi, “Self-Organization of a Porous Alumina Nanohole Array Using a Sulfuric/Oxalic Acid Mixture as Electrolyte,” Electrochemical Solid-State Letter , Vol. 7, pp. 15-17, 2004.
    5. W. Lee, R. Ji, U. Gosele and K. Nielsch, “Fast Fabrication of Long-Range Ordered Porous Alumina Membranes by Hard Anodization,” Nature Materials, Vol. 5, pp. 741-747, 2006.
    6. M. Ghorbani, F. Nasirpouri, A. I. Zad and A. Saedi, “On the Growth Sequence of Highly Ordered Nanoporous Anodic Aluminium Oxide,” Materials and Design, Vol. 27, pp. 983-988, 2007.
    7. H. J. Kang, D. J. Kim, S. J. Park, J. B. Yoo and Y. S. Ryu, “Controlled Drug Release Using Nanoporous Anodic Aluminum Oxide on Stent,” Thin Solid Films, Vol. 515, pp. 5184-5187, 2006.
    8. J. Y. Lin, P. J. Lien, T. Y. Yang, W. C. Hung and Y. T. Deng, “Nano-pore Arrays Fabricated by Anodic Aluminum Oxidation,” Journal of Advanced Engineering, Vol. 4, No. 1, pp. 71-75, January 2009.
    9. B. Hassani and E. Hinton, “A Review of Homogenization and Topology Optimization I—Homogenization Theory for Media with Periodic Structure,” Computers and Structures, Vol. 69, pp. 707-717, 1998.

    10. G. Alcalá, P. Skeldon, G. E. Thompson, A. B. Mann, H. Habazaki and K. Shimizu, “Mechanical Properties of Amorphous Anodic Alumina and Tantala Films Using Nanoindentation,” Nanotechnology, Vol. 13, pp. 451-455, 2002.
    11. Z. Xia, L. Riester, B. W. Sheldon, W. A. Curtin, J. Liang, A. Yin and J. M. Xu, “Mechanical Properties of Highly Ordered Nanoporous Anodic Alumina Membranes,” Reviews on Advanced Materials Science 6, pp. 131–139, 2004.
    12. K. Gall, Y. Liu, D. Routkevitch and D. S. Finch, “Instrumented Microindentation of Nanoporous Alumina Films,” Journal of Engineering Materials and Technology, Vol. 128, pp. 225-233, 2006.
    13. S. Ko, D. Lee, S. Jee, H. Park, K. Lee and W. Hwang, “Mechanical Properties and Residual Stress in Porous Anodic Alumina Structures,” Thin Solid Films, Vol. 515, pp. 1932-1937, 2006.
    14. J. Chen, P. Gu, Z. T. Liu and J. H. Zhao, “Mechanical Property Testing and Numerical Simulation of Alumina Films Containing Highly-Ordered Nanopore Array,” Journal of Experimental Mechanics, Vol. 21, No. 2, pp. 151-156, 2006.
    15. J. Chen, P. Gu, Z. T. Liu and J. H. Zhao, “Transversely Isotropic Elasticity of Porous Alumina Film,” Journal of Experimental Mechanics, Vol. 21, No. 3, pp. 307-314, 2006.
    16. T. H. Fang, T. H. Wang, C.H. Liu, L. W. Ji and S. H. Kang, “Physical Behavior of Nanoporous Anodic Alumina Using Nanoindentation and Microhardness Tests,” Nanoscale Research Letter, Vol. 2, pp. 410–415, 2007.
    17. W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, Vol. 7, No. 6, pp. 1564-1583, 1992.
    18. D. Li, Y. W. Chung, M. S. Wong and W. D. Sprout, “Nano-Indentation Studies of Ultrahigh Strength Carbon Nitride Thin Films,” Journal of Applied Physics, Vol. 74, No. 1, pp. 219–223, 1993.
    19. N. G. Chechenin, J. Battiger and J. P. Krog, “Nanoindentation of Amorphous Aluminum Oxide Films I. The Influence of the Substrate on the Plastic Properties,” Thin Solid Films, Vol. 261, pp. 219–277, 1995.
    20. S. Suresh, T. G. Nieh and B.W. Choi, “Nano-Indentation of Copper Thin Films on Silicon Substrates,” Scripta Materialia, Vol. 41, No. 9, pp. 951–957, 1999.
    21. A. Gouldstone, H. J. Koh, K. Y. Zeng, A. E. Giannakopoulos and S. Suresh, “Discrete and Continuous Deformation During Nanoindentation of Thin Films,” Acta Materialia, Vol. 48, No. 9, pp. 2277–2295, 2000.
    22. X. Chen and J. J. Vlassak, “Numerical Study on The Measurement of Thin Film Mechanical Properties by Means of Nanoindentation,” Journal of Materials Research, Vol. 16, No. 10, pp. 2974-2982, 2001.
    23. A. A. Volinsky, J. B. Vella and W. W. Gerberich, “Fracture Toughness, Adhesion and Mechanical Properties of Low-K Dielectric Thin Films Measured by Nanoindentation,” Thin Solid Films, Vol. 429, pp. 201-210, 2003.
    24. T. H. Fang, T. H. Wang and S. H. Kang, “Nanomechanical and Surface Behavior of Polydimethylsiloxanefilled Nanoporous Anodic Alumina,” Journal of Materials Science, pp. 1588–1593, 2009.
    25. G. Binning, C. F. Quate and C. Gerber, “Atomic Force Microscope,” Physical Review Letters, Vol. 56, pp. 930-933, 1986.
    26. J. Liang, H. Chik, A. Yin and J. Xu, “Two-Dimensional Lateral Superlattices of Nanostructures: Nonlithographic Formation by Anodic Membrane Template,” Journal of Applied Physics, Vol. 91, pp. 2544-2546, 2002.
    27. F. Rumiche, H. H. Wang, W. S. Hu, J. E. Indacochea and M. L. Wang, “Anodized aluminum oxide (AAO) nanowell sensors for hydrogen detection,” Sensors and Actuators , Vol. 134, pp. 869–877, 2008.
    28. O. Jessensky, F. Mu¨ller and U. Gosele, “Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,” Applied Physics Letters. , Vol. 72 , pp. 1173, 1998.
    29. Z. Wang, Y. K. Su and H. L. Li, “AFM Study of Gold Nanowire Array Electrodeposited within Anodic Aluminum Oxide Template,” Applied Physics Letters. , Vol. 74, pp. 563-565, 2002.
    30. Q. Fu, G. V. R. Rao, S. B. Basame, D. J. Keller, K. Artyushkova, J. E. Fulghum and G. P. Lo´pez, ” Reversible Control of Free Energy and Topography of Nanostructured Surfaces,” Journal of the American Chemical Society, Vol. 126, pp. 8904-8905, 2004.
    31. J. E. Kim, J. K. Park and C. S. Han, “Use of Dielectrophoresis in the Fabrication of an Atomic Force Microscope Tip with a Carbon Nanotube: Experimental Investigation,” Nanotechnology , Vol. 17, pp. 2937-2941, 2006.
    32. R. Howland and L. Benatar, “A Practical Guide to Scanning Probe Microscopy,” Park Scientific Instruments, Chap. 8–11, 1993.
    33. Y. C. Sui and J. M. Saniger, “Characterization of Anodic Porous Alumina by AFM,” Materials Letters , Vol. 48, pp. 127–136, 2001.
    34. N. A. Burnham, O. P. Behrend, F. Oulevey, G. Gremaud, P. J. Gallo, D. Gourdon, E. Dupas, A. J. Kulik, H. M. Pollock and G. A. D. Briggs, ”How does a tip tap,” Nanotechnology , Vol. 8, pp. 67–75, 1997.
    35. ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
    36. R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., John Wiley & Sons, Inc., Danvers, 2002.
    37. L. J. Segerlind, Applied Finite Element Analysis, 2nd, Wiley, New York, 1984.
    38. ANSYS User’s Manual, ANSYS Inc.
    39. 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
    40. 黃建銘,電鍍鎳薄膜機械性質之整合測試,國立清華大學碩士論文,2009。
    41. S. I. Bulychev, V. P. Alekhin, M. H. Shorshorov, A. P. Ternovskii and G. D. Shnyrev, “Determining Young's Modulus From The Indentor Penetration Diagram,” Industrial Lab, Vol. 41, No. 9, pp. 1409–1412, 1975.
    42. E. T. Hwu, S. K. Hung, C. W. Yang, K. Y. Huang and I. S. Hwang, “Real-Time Detection of Linear and Angular Displacements with A Modified DVD Optical Head,” Nanotechnology, Vol. 19, pp.1-7, 2008.
    43. E. T. Hwu, H. Illers, L. Jusko and H. U. Danzebrink, “Hybrid SPM Module Based On a DVD Optical Head,” Measurement Science and Technology , Vol. 20, pp.1-7, 2009.
    44. C. P. Green, H. Lioe, J. P. Cleveland, R. Proksch, P. Mulvaney and J. E. Sader, “Normal and Torsional Spring Constants of Atomic Force Microscope Cantilevers,” Scientific Instruments , Vol. 75, pp. 1988-1996, 2004.
    45. J. P. Cleveland, S. Mane, D. Bocek and P. K. Hansma, “A Nondestructive Method for Determining the Spring Constant of Cantilevers for the Scanning Force Microscopy,” Review of Scientific Instruments, Vol. 64, No. 2, pp. 403-405, 1993.
    46. J. E. Sader, J. W. M. Chon and P. Mulvaney, “Calibration of Rectangular Atomic Force Microscope Cantilevers,” Review of Scientific Instrument, Vol. 70, pp. 3967-3969, 1999.
    47. H. J. Butt and M. Jaschke, “Calculation of Thermal Noise in Atomic Force Microscopy,” Nanotechnology , Vol. 6, pp. 1-7, 1995.
    48. R. F. Gibson, Principles of Composite Material Mechanics, 2nd edition, CRC Press, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE