研究生: |
蘇育褘 Yu-Hwei Su |
---|---|
論文名稱: |
銅-胺基酸錯合物活化H2O2之研究:醛及有機酸的效應 Activation of hydrogen peroxide by Cu(II)-amino acid complexes: effects of aldehydes and organic acids |
指導教授: |
吳劍侯
Chien-Hou Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 銅錯合物 、胺基酸 、2-甲喹咻藍 、3-甲硫基丙醛 、亞硝基二甲基苯 |
外文關鍵詞: | Copper complex, Amino acid, Quinaldine blue, Methional, PNDA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究利用Cu(II)與自然胺基酸形成的銅錯合物,於25℃的磷酸鹽溶液中活化過氧化氫,並偵測反應中2-甲喹咻藍(QB)的初始氧化速率來探討銅錯合物活化過氧化氫效率。過氧化氫是種很強的氧化劑,在反應中能產生許多種活性氧化物種來分解QB,然而最主要的活性氧化物種為何,仍不得而知。故本研究藉由使用亞硝基二甲基苯胺(p-Nitrosodimethylaniline, PNDA)來觀察系統中產生OH●的多寡,以及使用3-甲硫基丙醛(methional)來觀察其對系統中QB分解反應的影響,methional是Cu(I)OOH●的清除劑,對系統中QB的分解速率有很明顯的抑制效果,故由實驗結果能確定最主要的活化氧化物種為Cu(I)OOH●,最後藉由methional對於一價銅與OH●生成的影響,推導出過氧化氫活化的反應機制。此外,系統中若有其他有機物質,例如:醛、有機酸時,則會對系統的QB分解速率有抑制的影響。
關鍵字:過氧化氫;銅錯合物;胺基酸;2-甲喹咻藍;3-甲硫基丙醛;亞硝基二甲基苯
Abstract
Activation of hydrogen peroxide by Cu(II) complexes of native amino acids (L) has been studied by measuring the initial oxidation rate of quinaldine blue (QB) in aqueous phosphate media at 25°C. Hydrogen peroxide is an effective oxidant that can generate many kinds of reactive oxygen species to oxidize organic compounds. However, the mechanistic pathway that includes either hydroxyl radical or Cu(I)OOH● as the major reactive species is unclear. The formation rate of OH● can be observed by adding p-Nitrosodimethylaniline(PNDA). Methional is a copper- hydroperoxo complex (Cu(I)OOH●) scavenger that can inhibit the oxidation of organic compounds. From the experimental results, the major reactive species is identified that is Cu(I)OOH●. Based on the formation of Cu(I) and OH● by effect of methional, a possible mechanism is proposed. Moreover, aldyhydes and organic acids in Cu(II)- amino acid complexes system always inhibit the degradation of QB.
Keywords : Hydrogen peroxide; Copper complex; Amino acid; Quinaldine blue; Methional; PNDA
參考文獻:
Ahmad, M. S.; Fazal, F.; Rahman, A.; Hadi, S. M.; Parish, J. H., Activities of
flavonoids for the cleavage of DNA in the presence of Cu(II): correlation
with generation of active ozygen species. Carcinogenesis 1992, 13,
605-608.
An, Y.-J.; Carraway, E. R., PAH degradation by UV/H2O2 in perfluorinated
surfactant solutions. Water Research 2002, 36, 309-314.
Aruoma, O. T., Deoxyribose assay for detecting hydroxyl radicals. Methods in
Enzymology 1994, 233, 57-66.
Baldrian, P.; Cajthaml, T.; Merhautova, V.; Gabriel, J.; Nerud, F.; Stopka, P.;
Hruby, M.; Benes, M. J., Degradation of polycyclic aromatic hydrocarbons
by hydrogen peroxide catalyzed by heterogeneous polymeric metal
chelates. Applied Catalysis B: Environmental 2005, 59, 267-274.
Baldrian, P.; Merhautova, V.; Gabriel, J.; Nerud, F.; Stopka, P.; Hruby, M.;
Benes, M. J., Decolorization of synthetic dyes by hydrogen peroxide with
heterogeneous catalysis by mixed iron oxides. Applied Catalysis B:
Environmental 2006, 66, 258-264.
Behnajady, M. A.; Modirshahla, N.; Ghanbary, F., A kinetic model for the decolorization of C. I. Acid Yellow 23 by Fenton process. Journal of Hazardous Materials 2007, 48, 98-102.
Bogan, B. W.; Trbovic, V.; Paterek, J. R., Inclusion og vegetable oils in
Fenton's chemistry for remediation of PAH-contaminated soils.
Chemosphere 2003, 50, 15-21.
Chen, L.-H., Liu, L.-Z., Shen, H.-X., Mn(II)-sodium dodecyl sulphate complex
mimic enzyme-catalyzed fluorescence quenching of Pyronine B by
hydrogen peroxide. Analytica Chimica Acta 2003, 480, 142-150.
Choudhary, V. R.; Samanta, C.; Choudhary, T. V., Factors influencing
decomposition of H2O2 over supported Pd catalyst in aqueous medium.
Journal of Molecular Catalysis A: Chemical 2006, 260, 115-120.
Chung, Y. S.; Moon, J. H.; Chung, Y. J.; Lee, K. Y.; Yoon, Y. Y., Determination
toxic and trace elements in algae by innstrumental neutron activation
analysis. Journal of Radioanalytical and Nuclear Chemistry 1999, 240,
95-100.
El-Daly, H. A.; Habib, A.-F. M.; Borhan El-Din, M. A., Kinetic and mechanism of
the oxidative color removal from Durazol Blue 8 G with hydrogen peroxide. Dye and Pigments 2003, 57, 197-210.
El-Daly, H. A.; Habib, A.-F. M.; Borhan El-Din, M. A., Kinetic investigation of
the oxidative decolorization of Direct Green 28 and Direct Blue 78 by
hydrogen peroxide. Dye and Pigments 2005, 66, 161-170.
Fayolle, M.; Romagna, F., Copper CMP evaluation: planarization issues.
Microelectronic Enhineering 1997, 37/38, 135-141.
Gabriel, J.; Baldrian, P.; Verma, P.; Cajthaml, T.; Merhautova, V.; Eichlerova, I.; Stoytchev, I.; Trnka, T.; Stopka, P.; Nerud, F., Degradation of BTEX and PAHs by Co(II) and Cu(II)-based radical-generating systems. Applied Catalysis B: Environmental 2004, 51, 159-164.
Gemeay, A. H.; Salem, M. A.; A., S. I., Activity of silica-alumina surface modified with some transition metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 117, 245-252.
Goi, A.; Trapido, M., Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols : a comparative study. Chemosphere 2002, 46, 913-922.
Goonetilleke, P. C.; Roy, D., Relative roles of acetic acid, dodecyl sulfate and benzotriazole in chemical mechanical and electrochemical mechanical planarization of copper. Applied Surface Science 2008, 254, 2696-2707.
Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P., Hydrogen peroxide production during experimental protein glycation. FEBS 1990, 268, 69-71
Jung, Y.-J.; Surh, Y.-J., Oxidative DNA damage and cytotoxicity induced by copper stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radical Biology and Medicine 2001, 30, 1407-1417.
Kato, Y.; Kitamoto, N.; Y., K.; T., O., The hydrogen peroxide/copper ion system, but not other metal-catalyzed oxidation systems, produces protein-bound dityrosine. Free Radical Biology and Medicine 2001, 31, 624-632.
Kosaka, K.; Yamada, H.; Matsui, S.; Echigo, S.; Shishida, K., Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1,10-phenanthroline. Environmental Science Technology 1998, 32, 3821-3824.
Liu, J.-Z.; Wang, T.-L.; Ji, L.-L., Enhanced dye decolorization efficiency by citraconic anhydride-modified horseradish peroxidase. Journal of Molecular Catalysis B: Enzymatic 2006, 41, 81-86.
Mapson, L. W.; Wardale D. A., Biosynthesis of ethylene. Enzymes involved in its formation from methional. Biochemcal Journal 1968, 107, 433-422.
Matsushita, M.; Tran, T. H.; Nosaka, A. Y.; Nosaka, Y., Photo-oxidation mechanism of L-alanine in TiO2 photocatalytic systems as studied by proton NMR spectroscopy. Catalysis Today 2007, 120, 240-244.
Midorikawa, K.; Uchida, T.; Okamoto, Y.; Toda, C.; Sakai, Y.; Ueda, K.; Hiraku, Y.; Murata, M.; S., K.; Kojima, N., Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage. Chemico-Biological Interactions 2004, 150, 271-281.
Minero, C.; Pellizzari, P.; Maurino, V.; Pelizzetti, E.; Vione, D., Enhancement of dye sonochemmical degradation by some inorganic anions present in natural waters. Applied Catalysis B: Environmental 2008, 77, 308-316.
Modirshahla, N.; Behnajady, M. A.; Ghanbary, F., Decolorization and mineralization of C. I. Acid Yellow 23 by Fenton and photo-Fenton processes. Dye and pigments 2007, 73, 305-310.
Murata, M.; Nishimura, T.; Chen, F.; Kawanishi, S., Oxidative DNA damage induced by hair dye components ortho-phenylenediamines and the enhancement by superoxide dismutase. Mutation Research 2006, 607, 184-191.
Murata, M.; Suzuki, T.; Midorik, K.; Oikawa, S.; Kawanishi, S., Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide. Free Radical Biology and Medicine 2004, 37, 793-802.
Nam, K.; Rodriguez, W.; Kukor, J. J., Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 2001, 45, 11-20.
Nam, S.; Renganathan, V.; Tratnyek, P. G., Substituent effects on azo dye oxidation by the Fe(III)-EDTA-H2O2 System. Chemosphere 2001, 45, 59-65.
Nerud, F.; Baldrian, P.; Gabriel, J.; Ogbeifun, D., Decolorization of synthetic dyes by the Fenton reagent and the Cu/pyridine/H2O2 system. Chemosphere 2001, 44, 957-961.
Neyens, E.; Baeyens, J., A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials 2003, B98, 33-50.
Orlinska, B.; Zawadiak, J.; D., G., Copper(II) chloride/tetrabutylammonium bromide as a catalytic system for the oxidation of 2-isopropylnaphthalene with oxygen. Applied Catalysis A: General 2005, 287, 68-74.
Park, J.-H.; Gopishetty, S.; Szewczuk, L. M.; Troxel, A. B.; G., H. R.; Penning, T. M., Formation of 8-oxo-7,8-dihydro-2-deoxyguanosine(8-oxo-dGuo) by PAH o-Quinones: involvement of reactive oxygen species and copper(II)/copper(I) redox cycling. Chemical Research in Toxicology 2005, 18, 1026-1037.
Pecci, L.; Montefoschi, G.; Cavallini, D., Some new details of the copper-hydrogen peroxide interaction. Biochemical and Biophysical Research Communication 1997, 235, 264-267.
Pelmenschikov, V.; Siegbahn, P. E. M., Copper-zinc superoxide dismutase: theoretical insights into the catalytic mechanism. Inorganic Chemistry 2005, 44, 3311-3320.
Poulios, I.; Micropoulou, E.; Panou, R.; Kostopoulou, E., Photooxidation of eosin Y in the presence of semiconducting oxides. Applied Catalysis B: Environmental 2003, 41, 345-355.
Robbins, M. H.; Drago, R. S., Activation of hydrogen peroxide for oxidation by copper(II) complexes. Journal of Catalysis 1997, 170, 295-303.
Rudler, H.; Denise, B., Copper(II)-catalyzed aerobic oxidation of indane in the presence of aldehydes: intermediate formation of hydroperoxides. Journal of Molecular Catalysis A: Chemical 2000, 154, 277-279.
Sabate, R.; Gallardo, M.; Maza, A. d. l.; Estelrich, J., A spectroscopy study of the interaction of pinacyanol with n-dodecyltrimethylammonium bromide micelles. Langmuir 2001, 17, 6433-6437.
Sakano, K.; Oikawa, S.; Hiraku, Y.; Kawanishi, S., Metabolism of carcinogenic urethane to nitric oxide is involved in oxidative DNA damage. Free Radical Biology and Medicine 2002, 33, 703-714.
Salem, I. A.; El-Maazawi, M. S., Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere 2000, 41, 1173-1180.
Schweigert, N.; Acero, J. L.; Gunten, U. V.; Canonica, S.; Zehnder, A. J. B.; Eggen, R. I. L., DNA degradation by mixture of copper and catechol is caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH. Environmental and Molecular Mutagenesis 2000, 36, 5-12.
Schweigert, N.; Belkin, S.; Leong-Morgenthaler, P.; Zehnder, A. J. B.; Eggen, R. I. L., Combinations of chlorocatechols and heavy metals cause DNA degradation in vitro but must not result in increased mutatuion rates in vivo. Environmental and Molecular Mutagenesis 1999, 33, 202-210.
Seike, K.; Murata, M.; Oikawa, S.; Hiraku, Y.; Hirakawa, K.; Kawanishi, S., Oxidative DNA Damage Induced by Benz[a]anthracene Metabolites via Redox Cycles of Quinone and Unique Non-Quinone. Chemical Research in Toxicology 2003, 16, 1470-1476.
Shah, V.; Verma, P.; Stopka, P.; Gabriel, J.; Baldrian, P.; Nerud, F., Decolorization of dyes with copper(II)/organic acid/hydrogen peroxide systems. Applied Catalysis B: Environmental 2003, 46, 287-292.
Stemmler, K.; Gunten, U. V., OH radical-initiated oxidation of organic compounds in atmospheric water phases: part 1. Reactions of peroxyl radical derived from 2-butoxyethanol in water. Atmospheric Environment 2000, 34, 4241-4252.
Stylidi, M.; Kondarides, D. I.; Verykios, X. E., Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied Catalysis B: Environmental 2004, 47, 189-201.
Tai, C.; Peng, J.-F.; Liu, J.-F.; Jiang, G.-B.; Zou, H., Determination of hydroxyl radicals in advanced oxidation process with dimethyl sulfoxide trapping and liquid chromatography. Analytica Chimica Acta 2004, 527, 73-80.
Verma, P.; Baldrian, P.; Nerud, F., Decolorzation of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere 2003, 50, 975-979.
Verma, P.; Shah, V.; Baldrian, P.; Gabriel, J.; Stopka, P.; Trnka, T.; Nerud, F., Decolorization of synthetic dyes using a copper complex with glucaric acid. Chemosphere 2004, 54, 291-295.
Wolff, S. P., Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods in Enzymology 1994, 233, 182-189.
Yamashita, N.; Tanemura, H.; Kawanishi, S., Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). Mutation Research 1999, 425, 107-155.
Yu, X.-Y., Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions.. Journal of Physical Chemistry 2004, 33 747-763.
林奕良. 水相中銅與胺基酸錯合物之光分解產物研究:醛的定量與分析.
碩士論文, 國立清華大學, 2005.
郭俊廷. 銅-胺基酸錯合物活化H2O2之動力學與反應機制探討. 碩士論文,
國立清華大學, 2006.
林采吟. 水相系統中過氧化氫的活化與量測. 博士論文, 國立清華大學,
2007.