簡易檢索 / 詳目顯示

研究生: 魏松煙
Wei, Sung-Yen
論文名稱: 鋁誘發結晶製備結晶/磊晶薄膜應用於太陽能電池之研究
Crystalline/Epitaxy Thin Film Approach for Solar Cell Application by Aluminum-Induced Crystallization
指導教授: 陳福榮
Chen, Fu-Rong
蔡春鴻
Tsai, Chuen-Horng
口試委員: 陳福榮
Chen, Fu-Rong
蔡春鴻
Tsai, Chuen-Horng
杜立偉
Tu, Li-Wei
林澤勝
Lin, Tzer-Shen
孫文檠
Sun, Wen-Ching
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 140
中文關鍵詞: 鋁誘發結晶磊晶太陽能虛擬基版
外文關鍵詞: aluminum-induced crystallization, epitaxy, solar cell, virtual substrate
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十年來,太陽光電能源的需求因全球能源匱乏危機而大幅提升,在太陽能產業發展中,降低發電成本並提升光電轉換效率始終是各家投注心力之研究主流。結晶矽基類的太陽能電池具有低材料成本、相對高的轉換效率、穩定且可長效使用等優點,使其產能及各界投入之研究能量始終難以被超越。鋁誘發結晶(aluminum-induced crystallization, AIC)為一種藉由將非晶矽與鋁金屬接觸來轉換為結晶矽之製程,此製程能製備出晶粒尺寸超過10微米之多晶矽(poly-Si)薄膜,亦可在晶種層(seeding layer)上藉由此製程在低於673K之溫度來達成低溫磊晶。AIC製程因具備了低溫、低材料及設備成本並且對環境無害等優點,使得此製程極有機會克服目前在太陽能元件以及其他光電固態元件領域中所面臨之諸多關鍵議題。
    在本研究當中,為了能夠達到太陽能電池結構設計或工業化之需求,我們投入研究並突破了許多AIC製程之本質限制,甚至更進一步將再結晶的材料系統由一元材料的純矽改變為二元合金材料,使得此製程除了矽晶太陽能元件外,更能廣泛應用,推展至各類前瞻固態元件當中。除了應用面之研究結果外,我們也針對改良之製程深入分析反應機制,並建立理論模型。
    針對改良太陽能或光電固態元件之關鍵議題,本論文之研究可分為三部分進行探討。首先在第一部分,我們將特定濃度的矽摻雜在初始的鋁膜當中,當非晶矽沉積在矽摻雜鋁膜上並經過退火後,將能使再結晶反應加速將近五十倍,藉此將能大幅提升鋁誘發結晶製程之產率,我們將此稱為Si-AIC製程。與一般AIC製程相較,Si-AIC製程因預摻雜矽原子於鋁膜中,而改變了晶粒成核及成長之行為,所製備出之poly-Si膜之晶粒尺寸及晶向皆與一般AIC有明顯差異。此部分我們針對矽晶粒之成核機制以及成長速率藉由穿透式電子顯微鏡(transmission electron microscope, TEM)以及能量散佈光譜儀(energy dispersion spectroscope, EDS)進行時間解析之分析與比較,建立反應機制之模型,並發現Si-AIC反應之活化能較一般AIC降低了約0.7eV。
    在第二部分,我們針對在低溫製備重摻雜之背面場效層(back surface field, BSF)進行研究。一般AIC製程可將p型(p-type)摻雜之poly-Si在低於773K之低溫製備於玻璃基版之上,然而,因為鋁在矽中之溶解度不高,而使得在低溫下,poly-Si膜之電洞濃度僅能達到約31018 cm-3。在此階段的研究當中,我們建立了稱為B-AIC之技術來提升電洞濃度。B-AIC藉由預先摻雜特定濃度之硼原子於初始鋁膜當中,非晶矽沉積於硼摻雜鋁膜上,在經過673K之低溫退火製程後,將可使製備出之poly-Si薄膜具有超過1019 cm-3之高摻雜濃度,達成低溫高濃度摻雜,製備出p型重摻雜(p++)之poly-Si。除此之外,我們將基版由玻璃改為單晶矽基版,將可使B-AIC製備出之p++-Si層經由固態磊晶(solid phase epitaxy, SPE)機制,磊晶成長於矽晶圓上,此部分之研究將建立AIC-SPE之熱力學理論模型。
    最後一部分,我們藉由AIC-SPE之磊晶技術,將非晶矽鍺(Si1-xGex)薄膜再結晶並磊晶於單晶矽基版上,發展出低溫異質磊晶技術。此階段之研究中,我們針對化學成分、原子結構以及AIC-SPE之分解-擴散-結晶機制進行詳盡的分析並建立理論模型。此SiGe-AIC-SPE技術具有能良好控制縱斷摻雜分布(doping profile)之優勢,使其能易於製備出階梯漸變結構來形成低缺陷密度之虛擬基版,除此之外,此技術具備製程簡單、低材料成本以及低溫製程等優點,使此技術在虛擬基版領域極具發展潛力。而矽鍺虛擬基版則可推展應用至高效率多接面太陽能電池以及固態照明元件等前瞻元件領域中,對產業之發展極具影響。
    此論文的最後,我們也將幾項針對AIC製程之基礎研究工作收錄於附錄中,以幫助我們更詳細了解AIC反應。


    The requirement of photovoltaic (PV) energy has vastly grown in last decade. To achieve high conversion efficiency with low production cost is the mainstream in the solar cell technology. Crystalline Si (c-Si) based solar cell is very popular since it combines the low-cost material system with the stable and high conversion efficiency for long term usage. Aluminum-induced crystallization (AIC) process is an approach to crystallize amorphous Si (a-Si) by means of contacting Al layer with a-Si. This approach is capable of achieving large grain sizes of over 10 μm or realizing the epitaxial growth on a seeding layer at a very low temperature of 673K. For improving several critical issues in the present solar PV technology and solid state devices, AIC process is very promising due to the features of low reaction temperature, low cost in precursors and facilities, and environmental friendly. In this study, the several limitations of standard AIC process were broke to adapt to the solar cell or industrial requirement. Furthermore, the material system in AIC process was modified to extend the application to other advanced solid state devices. Besides the application results, the theoretical models of our approaches had also been established to reveal the mechanisms of the modified processes.
    There’re three parts in this thesis to investigate several critical issues of AIC process for advanced solid state device application. In the first part, AIC process can be accelerated by a factor of about 50 by the doping of Si atoms into the initial Al layer for improving the throughput. This process is known as Si-doped AIC (Si-AIC). The grain size and crystallographic orientation of the grown polycrystalline Si (poly-Si) thin film produced are modified due to the fact that the presence of excess Si in the initial Al layer alters the nucleation and growth behavior of the Si grains as compared with the traditional AIC process. In this part the nucleation mechanism and growth rate of Si grains for Si-AIC are analyzed and quantitatively compared with those for AIC using time-series TEM/EDS images. It is found that the activation energy for grain growth was significantly reduced in the Si-AIC process, by 0.7eV compared with the AIC process.
    In the second part we investigate the heavily doping of BSF fabrication at very low temperature. P-type poly-Si film on foreign substrate can be fabricated at temperature lower than 773K by traditional AIC process. However, the ultimate carrier concentration of Si film is limited to approximately 3×1018 cm-3 because of the low solid solubility of Al in Si at temperatures below 773K. In this study, a process called B-AIC is developed in which boron is co-doped with Al to increase the carrier concentration in Si film to ~1019cm-3 at temperature as low as 673K. The carrier concentration can be tuned by the initial thickness of a-Si layer in B-AIC process. Beside the fabrication of poly-Si film on glass, the epitaxial growth of this heavily doped p++-Si film can also be realized on a mono-c-Si wafer via solid phase epitaxy (SPE) mechanism. The AIC/SPE thermodynamic model is also developed in this part.
    In the final part, the AIC process featured with SPE mechanism are extended to Si-Ge-Al system for heterogeneous epitaxy. A 300 nm Si1-xGex with tunable Ge content thin film can be epitaxially grew onto (100) mono-c-Si wafer at very low temperature of 673K. The chemical composition, atomic structure and the SPE reaction featured with the dissociation-diffusion-crystallization model of AIC process are carefully revealed and established. The development of this SiGe-AIC-SPE process is very promising to fabricate a low defect density virtual substrate by terrace grading structure approach due to its advantage of well controllable doping profile. Furthermore, the features of simple fabrication process, low material cost and low reaction temperature makes this approach predominant in the virtual substrate market.
    Additionally, our several works for revealing the fundamental of AIC process are appended in the appendix.

    Abstract i Chinese Abstract iv Acknowledgment vii Table of Contents ix Figure List xii Table List xx 1 Introduction 1 2 Overview of Metal-Induced Crystallization 9 2.1 a-Si interacts with metal 10 2.1.1 Compound forming systems 11 2.1.2 Simple eutectic systems 13 2.2 Description of aluminum-induced crystallization 16 2.2.1 Aluminum-induced layer exchange process 16 2.2.2 Dominant parameters of AIC process 19 2.2.3 Driving forces of aluminum-induced crystallization 29 2.3 Solid phase epitaxy with simple eutectic system 31 2.4 Aspect of solar cells fabrication by MIC approach 33 3 Experimental 35 3.1 Preparation 36 3.2 Characterization 38 4 Results & Discussion 40 4.1 Ultrafast Al(Si)-Induced Crystallization Process At Low Temperature 40 4.1.1 Experimental of Si-AIC 41 4.2.2 Revealing the crystallographic and model of Si-AIC process 42 4.2 Epitaxial Growth of Heavily Boron-Doped Si by Al(B)-Induced Crystallization at Low Temperature for Back Surface Field Manufacturing 58 4.2.1 Experimental of B-AIC 61 4.2.2 Revealing the results and model of B-AIC process 62 4.2.3 Interface engineering of solid phase epitaxy 66 4.3 Heterogeneous epitaxy by AIC-SPE process at low temperature for virtual substrate application 79 4.2.1 Experimental of SiGe-AIC 86 4.2.2 Results of SiGe-AIC process 87 4.3.2 Terrace graded SiGe structure by multi-round SiGe-AIC approach 99 5 Summary & Future Works 103 Appendix 107 A1 Al and Si layer exchange process – thickness ratio 107 A1.1 Experimental 107 A1.2 Simple explanation of thickness ratio influence 108 A2 Nucleation side control and patterned AIC 112 A2.1 Patterned AIC 113 A2.2 Nucleation site control 116 A3 Orientation selected epitaxy for grain enlargement of AIC poly-Si seed layers 119 A3.1 Motivations and concepts 119 A3.2 Experimental and concept of multi-round AIC approach 121 A3.3 Characterization of multi-round AIC poly-Si film 125 Reference 132

    [1] S. H. Kim, C. MacCracken, and J. Edmonds, "Solar energy technologies and stabilizing atmospheric CO2 concentrations," Progress in Photovoltaics, vol. 8, pp. 3-15, Jan-Feb 2000.
    [2] IEA. (2012). World Energy Outlook 2012. Available: http://www.iea.org/
    [3] N. R. E. Laboratory, "Best Research-Cell Efficiencies," ed, 2013.
    [4] Z. Shi and M. A. Green, "Survey of material options and issues for thin film silicon solar cells," Progress in Photovoltaics, vol. 6, pp. 247-257, Jul-Aug 1998.
    [5] R. Brendel, R. B. Bergmann, P. Lolgen, M. Wolf, and J. H. Werner, "Ultrathin crystalline silicon solar cells on glass substrates," Applied Physics Letters, vol. 70, pp. 390-392, Jan 1997.
    [6] D. Thorp, P. Campbell, and S. R. Wenham, "Conformal films for light-trapping in thin silicon solar cells," Progress in Photovoltaics, vol. 4, pp. 205-224, May-Jun 1996.
    [7] A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, "Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications," Nano Letters, vol. 12, pp. 2792-2796, 2012/06/13 2012.
    [8] K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, "Thin-film poly-Si solar cells on glass substrate fabricated at low temperature," Applied Physics a-Materials Science & Processing, vol. 69, pp. 179-185, Aug 1999.
    [9] M. J. Kerr, P. Campbell, and A. Cuevas, "Lifetime and efficiency limits of crystalline silicon solar cells," in Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, 2002, pp. 438-441.
    [10] A. Wang, J. Zhao, S. R. Wenham, and M. A. Green, "21.5% Efficient thin silicon solar cell," Progress in Photovoltaics: Research and Applications, vol. 4, pp. 55-58, 1996.
    [11] R. B. Bergmann, "Crystalline Si thin-film solar cells: a review," Applied Physics a-Materials Science & Processing, vol. 69, pp. 187-194, Aug 1999.
    [12] S. Reber and W. Wettling, "High-temperature processing of crystalline silicon thin-film solar cells," Applied Physics a-Materials Science & Processing, vol. 69, pp. 215-220, Aug 1999.
    [13] R. B. Bergmann, G. Oswald, M. Albrecht, and V. Gross, "Solid-phase crystallized Si films on glass substrates for thin film solar cells," Solar Energy Materials and Solar Cells, vol. 46, pp. 147-155, 1997.
    [14] C. Spinella, S. Lombardo, and F. Priolo, "Crystal grain nucleation in amorphous silicon," Journal of Applied Physics, vol. 84, pp. 5383-5414, Nov 1998.
    [15] K. Ishikawa, M. Ozawa, C. H. Oh, and M. Matsumura, "Excimer-laser-induced lateral-growth of silicon thin-films," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 37, pp. 731-736, Mar 1998.
    [16] R. S. Sposili and J. S. Im, "Sequential lateral solidification of thin silicon films on SiO2," Applied Physics Letters, vol. 69, pp. 2864-2866, Nov 1996.
    [17] J. S. Im, H. J. Kim, and M. O. Thompson, "PHASE-TRANSFORMATION MECHANISMS INVOLVED IN EXCIMER-LASER CRYSTALLIZATION OF AMORPHOUS-SILICON FILMS," Applied Physics Letters, vol. 63, pp. 1969-1971, Oct 1993.
    [18] S. R. Herd, P. Chaudhari, and M. H. Brodsky, "Metal contact induced crystallization in films of amorphous silicon and germanium," Journal of Non-Crystalline Solids, vol. 7, pp. 309-327, 1972.
    [19] I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "Fabrication and characterization of highly efficient thin-film polycrystalline-silicon solar cells based on aluminium-induced crystallization," Thin Solid Films, vol. 516, pp. 6984-6988, 8/30/ 2008.
    [20] I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "8% efficient thin-film polycrystalline-silicon solar cells based on aluminum-induced crystallization and thermal CVD," Progress in Photovoltaics, vol. 15, pp. 575-586, Nov 2007.
    [21] I. Gordon, K. Van Nieuwenhuysen, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "Development of interdigitated solar cell and module processes for polycrystalline-silicon thin films," Thin Solid Films, vol. 511-512, pp. 608-612, 2006.
    [22] L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, et al., "Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV," Thin Solid Films, vol. 511-512, pp. 21-25, 2006.
    [23] L. Carnel, I. Gordon, D. Van Gestel, G. Beaucarne, and J. Poortmans, "High open-circuit voltage values on fine-grained thin-film polysilicon solar cells," Journal of Applied Physics, vol. 100, Sep 2006.
    [24] I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, L. Carnel, G. Beaucarne, and J. Poortmans, "Thin-film polycrystalline silicon solar cells on ceramic substrates by aluminium-induced crystallization," Thin Solid Films, vol. 487, pp. 113-117, 2005.
    [25] T. Matsuyama, T. Baba, T. Takahama, S. Tsuda, and S. Nakano, "Polycrystalline Si thin-film solar cell prepared by solid phase crystallization (SPC) method," Solar Energy Materials and Solar Cells, vol. 34, pp. 285-289, 1994.
    [26] J.-S. Maa and S.-J. Lin, "Low temperature crystallization of amorphous silicon films," Thin Solid Films, vol. 64, pp. 63-64, 1979.
    [27] B. Bian, J. A. Yie, B. Q. Li, and Z. Q. Wu, "FRACTAL FORMATION IN A-SI-HAGA-SI-H FILMS AFTER ANNEALING," Journal of Applied Physics, vol. 73, pp. 7402-7406, Jun 1993.
    [28] L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engstrom, and P. A. Psaras, "CRYSTALLIZATION OF AMORPHOUS-SILICON DURING THIN-FILM GOLD REACTION," Journal of Applied Physics, vol. 62, pp. 3647-3655, Nov 1987.
    [29] S. F. Gong, H. T. G. Hentzell, A. E. Robertsson, L. Hultman, S. E. Hornstrom, and G. Radnoczi, "AL-DOPED AND SB-DOPED POLYCRYSTALLINE SILICON OBTAINED BY MEANS OF METAL-INDUCED CRYSTALLIZATION," Journal of Applied Physics, vol. 62, pp. 3726-3732, Nov 1987.
    [30] S. W. Russell, J. Li, and J. W. Mayer, "In situ observation of fractal growth during a-Si crystallization in a Cu[sub 3]Si matrix," Journal of Applied Physics, vol. 70, pp. 5153-5155, 1991.
    [31] S. Y. Yoon, K. H. Kim, C. O. Kim, J. Y. Oh, and J. Jang, "Low temperature metal induced crystallization of amorphous silicon using a Ni solution," Journal of Applied Physics, vol. 82, pp. 5865-5867, 1997.
    [32] M. S. Ashtikar and G. L. Sharma, "Silicide mediated low temperature crystallization of hydrogenated amorphous silicon in contact with aluminum," Journal of Applied Physics, vol. 78, pp. 913-918, 1995.
    [33] C. Hayzelden and J. L. Batstone, "Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films," Journal of Applied Physics, vol. 73, pp. 8279-8289, 1993.
    [34] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, "Nickel induced crystallization of amorphous silicon thin films," Journal of Applied Physics, vol. 84, pp. 194-200, 1998.
    [35] J. Schneider, J. Klein, M. Muske, S. Gall, and W. Fuhs, "Depletion regions in the aluminum-induced layer exchange process crystallizing amorphous Si," Applied Physics Letters, vol. 87, p. 031905, 2005.
    [36] T. J. Konno and R. Sinclair, "Metal-contact-induced crystallization of semiconductors," Materials Science and Engineering: A, vol. 179-180, pp. 426-432, 1994.
    [37] T. J. Konno and R. Sinclair, "Crystallization of silicon in aluminium/amorphous-silicon multilayers," Philosophical Magazine Part B, vol. 66, pp. 749 - 765, 1992.
    [38] L. H. Allen, J. R. Phillips, D. Theodore, C. B. Carter, R. Soave, J. W. Mayer, et al., "Two-dimensional Si crystal growth during thermal annealing of Au/polycrystalline-Si bilayers," Physical Review B, vol. 41, p. 8203, 1990.
    [39] L. H. Allen, J. W. Mayer, K. N. Tu, and L. C. Feldman, "Kinetic study of Si recrystallization in the reaction between Au and polycrystalline-Si films," Physical Review B, vol. 41, p. 8213, 1990.
    [40] J. M. Harris, R. J. Blattner, I. D. Ward, J. C. A. Evans, H. L. Fraser, M. A. Nicolet, et al., "Solid-phase crystallization of Si films in contact with Al layers," Journal of Applied Physics, vol. 48, pp. 2897-2904, 1977.
    [41] O. Nast, S. Brehme, D. H. Neuhaus, and S. R. Wenham, "Polycrystalline silicon thin films on glass by aluminum-induced crystallization," Ieee Transactions on Electron Devices, vol. 46, pp. 2062-2068, Oct 1999.
    [42] T. P. Drüsedau, A. Diez, and J. Bläsing, "Deposition of nanocrystalline silicon mediated by ultrathin aluminum underlayers by PCVD and sputter-deposition at 500 K," Thin Solid Films, vol. 337, pp. 41-44, 1999.
    [43] S. A. Lyon, R. J. Nemanich, N. M. Johnson, and D. K. Biegelsen, "Microstrain in laser-crystallized silicon islands on fused silica," Applied Physics Letters, vol. 40, pp. 316-318, 1982.
    [44] S. Gall, M. Muske, I. Sieber, O. Nast, and W. Fuhs, "Aluminum-induced crystallization of amorphous silicon," Journal of Non-Crystalline Solids, vol. 299-302, pp. 741-745, 2002.
    [45] O. Nast and A. J. Hartmann, "Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon," Journal of Applied Physics, vol. 88, pp. 716-724, Jul 2000.
    [46] A. Sarikov, J. Schneider, J. Klein, M. Muske, and S. Gall, "Theoretical study of the initial stage of the aluminium-induced layer-exchange process," Journal of Crystal Growth, vol. 287, pp. 442-445, Jan 2006.
    [47] O. Nast and S. R. Wenham, "Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization," Journal of Applied Physics, vol. 88, pp. 124-132, Jul 2000.
    [48] D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. London: Chapman and Hall, 1992.
    [49] J. L. Murray and A. J. McAlister, Binary Alloy Phase Diagrams: ASM International, Materials Park, OH, 1990.
    [50] J. H. Kim and J. Y. Lee, "Al-induced crystallization of an amorphous Si thin film in a polycrystalline Al/native SiO2/amorphous Si structure," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 35, pp. 2052-2056, Apr 1996.
    [51] H. Qingheng, E. S. Yang, and H. Izmirliyan, "Diffusivity and growth rate of silicon in solid-phase epitaxy with an aluminum medium," Solid-State Electronics, vol. 25, pp. 1187-1188, 1982.
    [52] J. W. Christian, The Theory of Transformations in Metals and Alloys, 1st ed.: Pergamon, Oxford, 1965.
    [53] A. Hiraki, "A MODEL ON THE MECHANISM OF ROOM-TEMPERATURE INTERFACIAL INTERMIXING REACTION IN VARIOUS METAL-SEMICONDUCTOR COUPLES - WHAT TRIGGERS THE REACTION," Journal of the Electrochemical Society, vol. 127, pp. 2662-2665, 1980.
    [54] G. Majni and G. Ottaviani, "LARGE-AREA UNIFORM GROWTH OF (100) SI THROUGH AL FILM BY SOLID EPITAXY," Applied Physics Letters, vol. 31, pp. 125-126, 1977.
    [55] B. Y. Tsaur, G. W. Turner, and J. C. C. Fan, "EFFICIENT SI SOLAR-CELLS BY LOW-TEMPERATURE SOLID-PHASE EPITAXY," Applied Physics Letters, vol. 39, pp. 749-751, 1981.
    [56] S. R. Wenham, L. M. Koschier, O. Nast, and C. B. Honsberg, "Thyristor photovoltaic devices formed by epitaxial growth," Electron Devices, IEEE Transactions on, vol. 46, pp. 2005-2012, 1999.
    [57] F. A. Trumbore, "SOLID SOLUBILITIES OF IMPURITY ELEMENTS IN GERMANIUM AND SILICON," Bell System Technical Journal, vol. 39, pp. 205-233, 1960.
    [58] S. Gall, J. Schneider, J. Klein, K. Hubener, M. Muske, B. Rau, et al., "Large-grained polycrystalline silicon on grlass for thin-film solar cells," Thin Solid Films, vol. 511, pp. 7-14, 2006.
    [59] D. He, J. Y. Wang, and E. J. Mittemeijer, "The initial stage of the reaction between amorphous silicon and crystalline aluminum," J. Appl. Phys., vol. 97, p. 093524, 2005.
    [60] S. Gall, C. Becker, K. Y. Lee, T. Sontheimer, and B. Rech, "Growth of polycrystalline silicon on glass for thin-film solar cells," Journal of Crystal Growth, vol. 312, pp. 1277-1281, 2010.
    [61] Z. Wang, L. Gu, F. Phillipp, J. Y. Wang, L. P. H. Jeurgens, and E. J. Mittemeijer, "Metal-Catalyzed Growth of Semiconductor Nanostructures Without Solubility and Diffusivity Constraints," Advanced Materials, vol. 23, pp. 854-859, 2011.
    [62] W. Fuhs, S. Gall, B. Rau, M. Schmidt, and J. Schneider, "A novel route to a polycrystalline silicon thin-film solar cell," Solar Energy, vol. 77, pp. 961-968, 2004.
    [63] K. Y. Lee, M. Muske, I. Gordon, M. Berginski, J. D'Haen, J. Hüpkes, et al., "Large-grained poly-Si films on ZnO:Al coated glass substrates," Thin Solid Films, vol. 516, pp. 6869-6872, 2008.
    [64] D. Van Gestel, I. Gordon, H. Bender, D. Saurel, J. Vanacken, G. Beaucarne, et al., "Intragrain defects in polycrystalline silicon layers grown by aluminum-induced crystallization and epitaxy for thin-film solar cells," Journal of Applied Physics, vol. 105, Jun 2009.
    [65] A. Sarikov, J. Schneider, J. Berghold, M. Muske, I. Sieber, S. Gall, et al., "A kinetic simulation study of the mechanisms of aluminum induced layer exchange process," Journal of Applied Physics, vol. 107, pp. 114318-11, 2010.
    [66] M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, "Orientation-controlled Si thin films on insulating substrates by Al-induced crystallization combined with interfacial-oxide layer modulation," Applied Physics Letters, vol. 95, pp. 132103-3, 2009.
    [67] Z. M. Wang, L. P. H. Jeurgens, J. Y. Wang, and E. J. Mittemeijer, "Fundamentals of Metal-induced Crystallization of Amorphous Semiconductors," Advanced Engineering Materials, vol. 11, pp. 131-135, Mar 2009.
    [68] F. Sommer, R. N. Singh, and E. J. Mittemeijer, "Interface thermodynamics of nano-sized crystalline, amorphous and liquid metallic systems," Journal of Alloys and Compounds, vol. 467, pp. 142-153, 2009.
    [69] L. P. H. Jeurgens, Z. M. Wang, and E. J. Mittemeijer, "Thermodynamics of reactions and phase transformations at interfaces and surfaces," International Journal of Materials Research, vol. 100, pp. 1281-1307, Oct 2009.
    [70] M. Stoger-Pollach, T. Walter, M. Muske, S. Gall, and P. Schattschneider, "Phase transformations of an alumina membrane and its influence on silicon nucleation during the aluminium induced layer exchange," Thin Solid Films, vol. 515, pp. 3740-3744, Feb 2007.
    [71] G. van Gurp, "Diffusion limited Si precipitation in evaporated Al?Si films," J. Appl. Phys., vol. 44, p. 2040, 1973.
    [72] J. McCaldin, "Diffusivity and Solubility of Si in the Al Metallization of Integrated Circuits," Appl. Phys. Lett., vol. 19, p. 524, 1971.
    [73] D. J. Eaglesham, A. E. White, L. C. Feldman, N. Moriya, and D. C. Jacobson, "Equilibrium shape of Si," Physical Review Letters, vol. 70, pp. 1643-1646, 1993.
    [74] J. Schneider, J. Klein, M. Muske, S. Gall, and W. Fuhs, "Aluminum-induced crystallization of amorphous silicon: preparation effect on growth kinetics," Journal of Non-Crystalline Solids, vol. 338, pp. 127-130, Jun 2004.
    [75] J. Schneider, J. Klein, M. Muske, S. Gall, and W. Fuhs, "Depletion regions in the aluminum-induced layer exchange process crystallizing amorphous Si," Applied Physics Letters, vol. 87, pp. 031905-3, 07/18/ 2005.
    [76] S. Gatz, K. Bothe, J. Müller, T. Dullweber, and R. Brendel, "Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells," Energy Procedia, vol. 8, pp. 318-323, 2011.
    [77] T. Fellmeth, S. Mack, J. Bartsch, D. Erath, U. Jager, R. Preu, et al., "20.1% Efficient Silicon Solar Cell With Aluminum Back Surface Field," Ieee Electron Device Letters, vol. 32, pp. 1101-1103, Aug 2011.
    [78] O. Schultz, A. Mette, M. Hermle, and S. W. Glunz, "Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology," Progress in Photovoltaics, vol. 16, pp. 317-324, Jun 2008.
    [79] M. M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, "High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters," Progress in Photovoltaics: Research and Applications, vol. 14, pp. 135-144, 2006.
    [80] S. Narasimha, A. Rohatgi, and A. W. Weeber, "An optimized rapid aluminum back surface field technique for silicon solar cells," Electron Devices, IEEE Transactions on, vol. 46, pp. 1363-1370, 1999.
    [81] V. Meemongkolkiat, K. Nakayashiki, D. S. Kim, R. Kopecek, and A. Rohatgi, "Factors limiting the formation of uniform and thick aluminum-back-surface field and its potential," Journal of the Electrochemical Society, vol. 153, pp. G53-G58, 2006.
    [82] T.-W. Zhang, F. Ma, W.-L. Zhang, D.-Y. Ma, K.-W. Xu, and P. K. Chu, "Diffusion-controlled formation mechanism of dual-phase structure during Al induced crystallization of SiGe," Applied Physics Letters, vol. 100, p. 071908, 2012.
    [83] B. R. Wu, S. Y. Lo, D. S. Wuu, S. L. Ou, H. Y. Mao, J. H. Wang, et al., "Direct growth of large grain polycrystalline silicon films on aluminum-induced crystallization seed layer using hot-wire chemical vapor deposition," Thin Solid Films, vol. 520, pp. 5860-5866, Jul 2012.
    [84] S. Peng, D. Hu, and D. He, "Low-temperature preparation of polycrystalline germanium thin films by Al-induced crystallization," Applied Surface Science, vol. 258, pp. 6003-6006, 2012.
    [85] Ö. Tüzün, Y. Qiu, A. Slaoui, I. Gordon, C. Maurice, S. Venkatachalam, et al., "Properties of n-type polycrystalline silicon solar cells formed by aluminium induced crystallization and CVD thickening," Solar Energy Materials and Solar Cells, vol. 94, pp. 1869-1874, 2010.
    [86] S.-Y. Wei, S.-M. Yu, L.-C. Yu, W.-C. Sun, C.-K. Hsieh, T.-S. Lin, et al., "Ultrafast Al(Si)-induced crystallisation process at low temperature," CrystEngComm, vol. 14, pp. 4967-4971, 2012.
    [87] Z. M. Wang, J. Y. Wang, L. P. H. Jeurgens, and E. J. Mittemeijer, "Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers," Physical Review B, vol. 77, p. 045424, 2008.
    [88] Y. Civale, G. Vastola, L. K. Nanver, R. Mary-Joy, and J. R. Kim, "On the Mechanisms Governing Aluminum-Mediated Solid-Phase Epitaxy of Silicon," Journal of Electronic Materials, vol. 38, pp. 2052-2062, Oct 2009.
    [89] S.-C. Tsai, E. W. Huang, J.-J. Kai, and F.-R. Chen, "Microstructural evolution of nuclear grade graphite induced by ion irradiation at high temperature environment," Journal of Nuclear Materials, vol. 434, pp. 17-23, 3// 2013.
    [90] M. M. Hilali, J. M. Gee, and P. Hacke, "Bow in screen-printed back-contact industrial silicon solar cells," Solar Energy Materials and Solar Cells, vol. 91, pp. 1228-1233, 2007.
    [91] E. Trend. (2013, 5/22). Available: http://pv.energytrend.com/pricequotes.html
    [92] A. Martí and G. L. Araújo, "Limiting efficiencies for photovoltaic energy conversion in multigap systems," Solar Energy Materials and Solar Cells, vol. 43, pp. 203-222, 9/1/ 1996.
    [93] M. W. Wanlass, T. J. Coutts, J. S. Ward, K. A. Emery, T. A. Gessert, and C. R. Osterwald, "Advanced high-efficiency concentrator tandem solar cells," in Photovoltaic Specialists Conference, 1991., Conference Record of the Twenty Second IEEE, 1991, pp. 38-45 vol.1.
    [94] J. P. Douglas, "Si/SiGe heterostructures: from material and physics to devices and circuits," Semiconductor Science and Technology, vol. 19, p. R75, 2004.
    [95] J. W. Matthews and A. E. Blakeslee, "Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers," Journal of Crystal Growth, vol. 32, pp. 265-273, 2// 1976.
    [96] V. T. Bublik, S. S. Gorelik, A. A. Zaitsev, and A. Y. Polyakov, "Calculation of the Binding Energy of GeSi Solid Solution," physica status solidi (b), vol. 65, pp. K79-K84, 1974.
    [97] J. H. Li, G. Springholz, J. Stangl, H. Seyringer, V. Holy, F. Schaffler, et al., "Strain relaxation and surface morphology of compositionally graded Si/Si[sub 1 - x]Ge[sub x] buffers," Barga, Tuscany (Italy), 1998, pp. 1610-1615.
    [98] E. V. Jelenković, O. Kutsay, S. K. Jha, K. C. Tam, P. F. Lee, and I. Bello, "Aluminum induced formation of SiGe alloy in Ge/Si/Al thin film structure," Journal of Non-Crystalline Solids, vol. 358, pp. 771-775, 2012.
    [99] M. Halbwax, C. Renard, D. Cammilleri, V. Yam, F. Fossard, D. Bouchier, et al., "Epitaxial growth of Ge on a thin SiO2 layer by ultrahigh vacuum chemical vapor deposition," Journal of Crystal Growth, vol. 308, pp. 26-29, 2007.
    [100] M. Zou, L. Cai, and W. Brown, "Nano-aluminum-induced low-temperature crystallization of PECVD amorphous silicon," Electrochemical and Solid State Letters, vol. 8, pp. G103-G105, 2005.
    [101] R. B. Bergmann, C. Zaczek, N. Jensen, S. Oelting, and J. H. Werner, "Low-temperature Si epitaxy with high deposition rate using ion-assisted deposition," Applied Physics Letters, vol. 72, pp. 2996-2998, 1998.
    [102] B. Gorka, P. Dogan, I. Sieber, F. Fenske, and S. Gall, "Low-temperature epitaxy of silicon by electron beam evaporation," Thin Solid Films, vol. 515, pp. 7643-7646, 2007.
    [103] L. Haji, P. Joubert, J. Stoemenos, and N. A. Economou, "Mode of growth and microstructure of polycrystalline silicon obtained by solid-phase crystallization of an amorphous silicon film," Journal of Applied Physics, vol. 75, pp. 3944-3952, 1994.
    [104] S. S. Lau, Z. L. Liau, and M. A. Nicolet, "SOLID-PHASE EPITAXY IN SILICIDE-FORMING SYSTEMS," Thin Solid Films, vol. 47, pp. 313-322, 1977.
    [105] R. Drosd and J. Washburn, "Some observations on the amorphous to crystalline transformation in silicon," Journal of Applied Physics, vol. 53, pp. 397-403, 1982.
    [106] L. Csepregi, E. F. Kennedy, J. W. Mayer, and T. W. Sigmon, "SUBSTRATE-ORIENTATION DEPENDENCE OF EPITAXIAL REGROWTH RATE FROM SI-IMPLANTED AMORPHOUS SIA," Journal of Applied Physics, vol. 49, pp. 3906-3911, 1978.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE