簡易檢索 / 詳目顯示

研究生: 鄭照霖
Cheng, Chao-Lin
論文名稱: 電解滲氫技術於薄膜機械性質調變之應用
Modification of Thin Film Mechanical Properties Using Electrolytic Hydrogenation Technique
指導教授: 方維倫
Fang, Weileun
口試委員: 徐文光
鄭裕庭
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: 電解滲氫技術薄膜機械性質
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將傳統電解滲氫技術整合於微機電系統,由於薄膜機械性質在結構設計及耐磨耗元件扮演重要角色。若能透過改質方式調變薄膜機械性質,使得單一材料具有多種應用性,降低製程上材料選用的限制。因此本研究提出電解滲氫技術應用於調變薄膜機械性質,提升設計與製造上之性能與良率。此技術屬於低溫製程,同時電化學反應具有製程均勻性佳的優點,在不改變原始結構厚度的前提下,進行表面改質。本研究將首先針對鈦薄膜進行滲氫處理,透過微機電製造技術製作微懸臂樑結構,搭配電流密度與處理時間等滲氫參數,驗證此方法應用在薄膜機械性質調變的可行性,再將此技術應用於CMOS-MEMS上常見的鋁薄膜材料,提升此技術於薄膜改質的應用性。搭配量測儀器架設,定性及定量分析在不同滲氫條件下,機械特性變異量。同時,建立單一種金屬材料於不同滲氫條件下,包含成分分析及殘餘應力、楊氏模數、硬度等機械材料性質參數資料,做為後續應用於元件上之參考。


    中文摘要 I 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2.1 電解滲氫技術於塊材改質 2 1-2.2 薄膜機械性質調變 3 1-3 研究動機 6 1-4 研究目標 7 第二章 原理與分析 19 2-1 電解滲氫技術之原理 19 2-2 電解滲氫材料選定 21 2-3 機械性質萃取 22 2-3.1 殘餘應力 22 2-3.2 楊氏模數 24 第三章 鈦薄膜之機械性質調變 30 3-1 製程流程與結果 30 3-2 薄膜化學及機械性質量測 31 3-3 結果與討論 35 第四章 鋁薄膜之機械性質調變 46 4-1 製程流程與結果 46 4-2 薄膜機械性質量測 47 4-3 結果與討論 50 第五章 結論與未來工作 63 5-1 結論 63 5-2 未來工作 64 參考文獻 65

    [1] J. K. Choi, J. Lee, J. B. Yoo, J. S. Maeng and Y.M. Kim, “Residual stress analysis of SiO2 films deposited by plasma enhanced chemical vapor deposition, Surface and Coating Technology, 131, pp.153-157, 2000.
    [2] X. L. Peng and T. W. Clyne, “Residual stress and debonding of DLC films on metallic substrates,” Diamond and Related Materials, 7, pp.944-950, 1998.
    [3] H. Guckel, D. W. Burns, C. C. G. Visser, H. A. C. Tilmans and D. DeRoo, “Fined grained polysilicon films with built-in tensile strain,” IEEE Transactions on Electron Devices, 6, pp.800-801 ,1998.
    [4] K. Najafi and K. Suzuki, “A novel technique and structure for the measurement of intrinsic stress and Young’s modulus of thin films,” IEEE MEMS, Salt Lake, Feb., 1989, pp.96-97.
    [5] Z. Shan and S. K. Sitaraman, “Elastic–plastic characterization of thin films using nanoindentation technique”, Thin Solid Films, 437, pp.176–181, 2003.
    [6] Y.-P. Ho, M. Wu, H.-Y. Lin, and W. Fang, “A robust and reliable stress-induced self-assembly mechanism for optical devices,” IEEE / LEOS Optical MEMS, Lugano, Switzerland, Aug., 2002, pp.131-132.
    [7] C. N. Panagopoulos, A. S. El-Amoush and K. G. Georgarakis, “The effect of hydrogen charging on the mechanical behaviour of α-brass,” Journal of Alloys and Compounds, 392, pp.159-164, 2005.
    [8] A. S. El-Amoush, “An investigation of mechanical degradation of AlMg1SiCu aluminum alloy by hydrogen”, Journal of Alloys and Compounds, 438, pp.222–231, 2007.

    [9] T.-I. Wu and J.-C. Wu, “Effects of cathodic charging and subsequent solution treating parameters on the hydrogen redistribution and surface hardening of Ti–6Al–4V alloy”, Journal of Alloys and Compounds, 466, pp.153–159, 2008.
    [10] H.-Y. Lin and W. Fang, “Rib-reinforced micromachined beam and its applications,” Journal of Micromechanics and Microengineering, 10, pp.93-99, 2000.
    [11] W.-S. Su, H.-Y. Huang and W. Fang, “Modification of the mechanical properties of SiO2 thin film using plasma treatments for micro-electro-mechanical systems applications,” Japanese Journal of Applied Physics, 47, pp.5242–5247, 2008.
    [12] Y. Jiang, T. Ono and M. Esashi, “Temperature-dependent mechanical and electrical properties of boron-doped piezoresistive nanocantilevers,” Journal of Micromechanics and Microengineering, 19, 065030, 2009.
    [13] M.-K. Yeh, B.-Y. Chen, N.-H. Tai and C.-C. Chiu, “Force Measurement by AFM Cantilever with Different Coating Layers,” Key Engineering Materials, 326-328, pp.377-380, 2006.
    [14] S. Greek, and N. Chitica, “Deflection of surface- micromachined devices due to internal, homogeneous or gradient stresses,” Sensors and Actuators A, 78, pp.1-7, 1999.
    [15] S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, and R. Mertens, “Structure and mechanical properties of polycrystalline silicon germanium for micromachining application,” Journal of Microelectromechanical System, 7, pp.365-372, 1998.

    [16] W.-H. Chu and M. Mehregany, “A Study of Residual Stress Distribution Through the I Thickness of p+ Silicon Films,” IEEE Transactions on Electron Devices, 40, pp.1245 -1250, 1993.
    [17] E. H. Yang and S. S. Yang, “The quantitative determination of the residual stress profile in oxidized p+ silicon films,” Sensors and Actuators A, 54, pp.684-689, 1996.
    [18] W. Fang and J. A. Wickert, “Comments on measuring thin-film stresses using bi-layer micromachined beams,” Journal of Micromechanics and Microengineering, 5, pp.276-281, 1995.
    [19] B.-H. Jang, H.-Y. Huang, W. Fang, and S.-W. Lin, “Design, Fabrication, and Property Measurement of a Zero-Insertion-Force (ZIF) MEMS Connector,” Electronic Materials and Packaging, EMAP 2008. International Conference, Taipei , Oct., 2008, pp.133–136.
    [20] W.-S. Su, S.-T. Lee, C.-Y. Lin, M.-S. Tsai, M.-C. Yip and W. Fang, “Tuning the shape and curvature of micromachined cantilevers using multiple plasma treatments,” Sensors and Actuators A, 130-131, pp.553–559, 2006.
    [21] W.-S. Su, S.-T. Lee, C.-Y. Lin, M.-C. Yip, M.-S. Tsai and W. Fang, “Control the Shape of Buckling Micromachined Beam using Plasma Chemistry Bonding Technology,” Japanese Journal of Applied Physics, 45, pp.8479–8483, 2006.
    [22] C.-K. Chan, C.-P. Hsu, M. Wu, H. Hocheng, R. Chen, and W. Fang, “A novel differential capacitive-sensing dual-axis accelerometer design using pendulum-proofmass, gimbal-spring, and HARM vertical-combs,” Transducers, Denver, Jun., 2009, pp.1944-1947.

    [23] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation,” Technical Digest of the 12th IEEE International Conference on Micro Electro Mechanical Systems, Orlando, Jan., 1999, pp.606-611.
    [24] Y.-J Huang, T.-L. Chang and H.-P. Chou “Study of symmetric microstructure for CMOS multilayer residual stress,” Sensors and Actuators A, 150, pp.237-242, 2009.
    [25] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel and G. K. Fedder, “Post-CMOS processing for high-aspect-ratio integrated silicon microstructures” Journal of Microelectromechanical Systems, 11, pp.93-101.
    [26] T.-I. Wu, and J.-K. Wu, “Effects of electrolytic hydrogenating parameters on structure and composition of surface hydrides of CP-Ti and Ti–6Al–4V alloy,” Materials Chemistry and Physics, 74, pp.5-12, 2002.
    [27] R. McCright, Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, NACE-5, Firminy, France, Jun,. 1973, pp.306-325.
    [28] B. Sakintuna, F. Lamari-Darkrim and M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” Journal of Hydrogen Energy, 32, pp.1121–1140, 2007.
    [29] D. P. Broom, “The accuracy of hydrogen sorption measurements on potential storage materials,” Journal of Hydrogen Energy, 32, pp.4871–4888, 2007.
    [30] J. F. Newman and L. L. Shreir, “Role of hydrides in hydrogen entry into steel from solutions containing promoters,” Corrosion Science, 9, pp.631-641, 1969.
    [31] W. Hu and J.-Y. Lee, “Electrocatalytic properties of Ti, Ni/Ni-Mo composite, electrodes for hydrogen evolution reaction”, International Journal of Hydrogen Energy, 23, pp.253-251, 1998.
    [32] H. Conrad, G. Ertl and E. E. Latta, “Adsorption of hydrogen on palladium single crystal surfaces,” Surface Science, 41, pp.435–446, 1974.
    [33] Y.-T. Chuang, S.-P. Ju, and C.-H. Lin, “Novel Palladium Nanorod Electrode Ensemble for Electrochemical Evalution of Hydrogen Adsorption,” Transducers, Beijing, China, June, 2011, pp.166-169.
    [34] C. O’Mahony, M. Hill, P. J. Hughes and W. A. Lane, “Titanium as a micromechanical material,” Journal of Micromechanics and Microengineering, 12, pp.438-443, 2002.
    [35] W. Fang, and J.A. Wickert, “Determining mean and gradient residual stresses in thin films using micromachined cantilevers,” Journal of Micromechanics and Microengineering, 6, pp301-309, 1996.
    [36] S. S. Rao, Mechanical Vibrations. 3rd Edition, Menlo Park, CA: Addision-Wesley, 1995.
    [37] K. E. Petersen, and C. R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physics, 50, pp.6761-6766, 1979.
    [38] ]L. Kiesewetter, J.-M. Zhang, D. Houdeau, and A. Steckenborn, “Determination of Young's moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, 35, pp.153-159, 1992.
    [39] H.-C. Tsai, and W. Fang, “Determining the Poisson’s ratio of thin film materials using resonant method,” Sensors and Actuators A, 103, pp.377-383, 2003.

    [40] T. Asam, “Glow discharge optical spectroscopy depth profile analysis of conductive and nonconductive samples in a commercial service laboratory,” Surface and Coatings Technology, 116–119, pp.310-312, 1999.
    [41] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, 7, pp.1564–1583, 1992.
    [42] W. D. Nix, “Mechanical properties of thin films,” Metallurgical Transactions A, 20, pp.2217-2245, 1989.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE