簡易檢索 / 詳目顯示

研究生: 陳明玉
Ming-Yu Chen
論文名稱: 熱緊迫蛋白質70.2之功能性研究:高熱對台灣杜洛克品種豬在生長性能及心血管生理的效應
In Vivo Functional Studies of Heat Shock Protein 70.2:Hyperthermic Effects on Growth Performance and Cardiovascular Physiology in Duroc Pigs in Taiwan
指導教授: 許宗雄
Tzong-Hsiung Hseu
李文權
Wen-Chuan Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 129
中文關鍵詞: 熱緊迫蛋白質70生長性能全身加熱心肌損傷耐熱性單核苷酸多態型杜洛克
外文關鍵詞: heat shock protein 70, growth performance, whole body hyperthermia, myocardial injury, thermotolerance, single nucleotide polymorphism, Duroc, pig
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地處亞熱帶地區,養豬產業因夏季高溫多濕,造成豬隻生長性能及繁殖能力降低,而蒙受巨大經濟損失,因此本研究提出抗熱策略,並詳細研究高熱對豬隻生長性能與心臟生理效應,以期改善夏季熱緊迫問題,提升養豬產業價值。
    首先,針對熱緊迫蛋白質誘導型表現量最大的HSP70.2基因5’端控制序列進行單核苷酸多態型(SNP)研究,並與各種生長性狀進行相關性分析。結果發現該序列中第393位核苷酸為TT或TC型的杜洛克豬隻的背脂厚度會較CC型者薄(P<0.05);同時此位核苷酸具有Bsaw I限制酶切位。因此,我們可利用此位核苷酸多態型作為早期偵測杜洛克豬之背脂厚度之分子標記。然而,進一步的研究並未在豬隻HSP70.2結構基因發現SNP。
    為發展抗熱豬隻品系,我們採用生產具有HSP70.2高表現量的基因轉殖豬為策略,並開發功能測試技術來驗證豬隻抗熱能力。利用PCR方法,全長之HSP70.2構造基因已經被選殖出來,並經詳細的定序分析工作,確認轉譯之蛋白質序列無誤。再設計以CMV為啟動子驅動HSP70.2構造基因表現,同時完成在C端融合一段綠色螢光蛋白質(GFP)序列以作為報導基因(reporter gene)。進一步結合利用基因顯微注射與胚胎移植技術,結果成功獲得兩個F0基因轉殖品系D6-11A及D6-12A;其轉殖效率為16.7%。D6-11A及D6-12A之基因轉殖套數分別為60及12;其轉殖蛋白表現量分別為6.4%及1.4%。將此品系的兩隻基因轉殖豬與另外一隻同胎非基因轉殖豬D6-01A之耳朵初級纖維母細胞分離培養以進行抗熱能力分析,結果發現D6-11A的初級纖維母細胞經加熱處理後其存活率(78.1±1.9%)與D6-12A及D6-01A的初級纖維母細胞經加熱處理後其存活率分別為60.9±1.5%及 62.9±4.5%,有顯著差異(P<0.05)。以上結果顯示,當基因轉殖豬之初級纖維母細胞中含有HSP70.2較高的蛋白質表現量時,具有較佳的細胞抗熱能力。然而,要證明豬隻的抗熱能力需要開發全豬功能測試技術。
    我們進一步建立了全豬手術台加熱技術,以進行豬隻在高熱處理時生理反應之研究。將25-35公斤之HSP70.2-GFP基因轉殖豬與同胎非轉殖豬進行全豬加熱,觀察其中對熱最敏感之臟器—心臟對熱所產生之各項反應,結果發現基因轉殖豬在加熱至體溫上升5℃並維持1小時及恢復期1小時的動脈血壓,包括平均動脈壓、收縮壓及舒張壓,均比非基因轉殖豬高出約10毫米汞柱(P<0.05);此現象表示轉殖基因HSP70.2-GFP可能參與正常血管收縮機制。另外全豬加熱會引起心電圖發生異常,如產生心室早期收縮(VPC)、ST segment 上揚及Q波變化,這些變化代表心肌發生損傷。同時,在加熱過程中,我們採集血清並測定心肌損傷標記cTnI在血清中的含量,結果發現在加熱組中當豬體溫上升3℃以上時,cTnI開始大量釋出至血清中,唯此釋出量在轉殖豬與非轉殖豬之間無顯著差異。經過18小時的恢復期,我們將所有豬隻進行犧牲採樣,並進行心臟組織切片之形態學及病理學觀察。結果發現,在兩個加熱組,無論基因轉殖豬或非基因轉殖豬,其心肌細胞微細構造都發生斷裂情形,並且在心肌組織中存有淋巴球、嗜中性白血球、嗜伊紅性白血球或巨噬細胞的浸潤作用,尤其在cTnI釋出超過0.55 ng/ml的樣本,其心肌病變更為嚴重。以上現象則表示,HSP70.2-GFP轉殖豬在心肌細胞可能表現量不足或因GFP干擾HSP70.2正常摺疊狀態,以致於失去HSP70.2的分子伴護者功能,而沒有發揮保護心肌受損之功能。
    綜合以上觀察的結果,本研究發現HSP70.2基因5’端控制序列之核苷酸多態型會影響杜洛克豬隻之生長性能,而HSP70.2-GFP基因轉殖豬則可能因為表現出來的融合蛋白質摺疊狀態不正常或其蛋白質表現量不足,因而無法發揮對全身加熱所導致心肌損傷的保護功能。本研究因此也建立了檢測豬隻對高熱反應模式的手術台加熱技術,對於將來測試豬隻抗熱性能有相當大的助益。


    High ambient temperature and humidity result in economic loss in pigs including growth and reproduction performances in Taiwan in subtropical area. Therefore, the strategies for thermoresistance were established and hyperthermic effects on growth performance and cardiovascular physiology were investigated exhaustively, in order to increase the economic value in pig industry.
    We analyzed the single nucleotide polymorphism (SNP) in 5’-flanking region of porcine heat shock protein 70.2 gene, the highly inducible form, and then analyzed the association of these SNP with growth performance in Duroc pigs. The result indicated that pigs with TT and TC genotypes at 393 nt in 5’-flanking region have thinner backfat thickness than those with CC type (P<0.05). Thus, the result suggested that the polymorphic Bsa WI site in the 5’-flanking region of porcine HSP70.2 may be used as a marker for the early selection of ultrasonic backfat thickness in Duroc pigs. However, the SNPs in structural region of porcine HSP70.2 have been not found in our further study.
    In order to develop the thermoresistant breeds, the strategies were established; one was to produce the transgenic pigs overexpressing HSP70.2 gene fused with GFP gene and driven by CMV promoter, another was to set up a technique for functional test to examine resistant ability to hyperthermia. First, the whole length of porcine HSP70.2 gene was amplified by RT-PCR, and then the protein sequence translated correctly by detail sequencing. Second, two transgenic pigs were produced by microinjecting pCMV-HSP70-GFP DNA into the pronucleus of fertilized eggs. Immunoblot assay revealed the varied overexpression level (6.4% and 1.4%) of HSP70-GFP in transgenic pigs. After heating at 45℃ for 3 h, the survival rate (78.1%) of the primary fibroblast cells from the highly expressing transgenic pig exceeded that from the non-transgenic pig (62.9%). This result showed that primary fibroblasts overexpressing HSP70-GFP confer cell thermotolerance. We suggested that transgenic pigs overexpressing HSP70 might improve their thermotolerance in summer season and therefore reduce the economic lost in animal production. However, it is necessary to develop a functional test in whole body to prove the ability to resistant hyperthermia.
    Furthermore, a technique, whole body hyperthermia (WBH), was set up to investigate the hyperthermic response in pig. Transgenic pigs expressing HSP70 were generated with a fusion marker of green fluorescent protein (GFP) following the gene. The offspring from F1 and F2 transgenic pigs (TG) were employed to monitor the cardiovascular response to heat stress by WBH. Both heart rate (HR) and mean arterial pressure (MAP) were substantially increased after WBH transgenic (TG) and non-transgenic (NTG) littermates compared with those in their shamed control groups. However, there was no significant difference in HR between the groups. Among the heated groups, there were significant different in arterial pressure parameters MAP, systolic or diastolic pressure when animal body temperatures were increased by up to 5℃ and prolonged for 1 hr after. Myocardial injury serum marker, cardiac troponin I (cTnI), was concomitantly monitored during WBH episodes. Notably, cTnI levels in heated groups were substantially enhanced when animal body temperature was increased by up to 3℃ (Δ3℃) and thereafter at rest timepoints during the experiment. Levels of cTnI for both NTG and TG animals were significantly enhanced for 1 hr after WBH. However, there was no significant difference in cTnI levels increased by WBH between the NTG and TG groups. The electrocardiogram (ECG) results were also monitored during the experiment; ST segment elevation, Q-wave changes, and ventricular premature complexes were initially occurred and consistently continued after Δ3℃. At 18 hr recover after heat stress, all animals were sacrificed and the hearts were harvested for pathological examination. Myofibril was fragmented, lysic, and myofibrostic and lymphocytes, eosinophils, and neutrophils infiltrated intermyofibrils in both HS groups. These pathological examination findings for the hearts were severe in the pigs releasing the cTnI level □0.55 ng/ml (Table 2). Above observations indicated that the dysfunction in chaperone of HSP70.2 may be insufficient expression or miss folding by GFP fused and then HSP70.2 can not protect cardiomyocytes from thermal injury.
    In conclusion, the backfat thickness of Duroc pigs would be affect by the SNPs in 5’-flanking region of porcine HSP70.2 gene. Nevertheless, the HSP70-GFP fusion protein could not confer the protective in cardiovascular changes in transgenic pigs from heat stress which may be caused by improper folding conformation or expressed insufficiently. Finally, a novel pig model for whole body hyperthermia was established to examine the pig’s response to hyperthermia, and it is useful for testing the thermotolerance of pigs in the future.

    Summary (in Chinese and English)……………………………… 1 Chapter 1: General Introduction…………………………………. 8 Chapter 2: Association of a Single Nucleotide Polymorphism in the 5’-Flanking Region of Porcine HSP70.2 with Backfat Thickness in Duroc Breed (Asian-Aust. J. Anim. Sci. 16(1):100-10, 2003)………………………. 18 Chapter 3: Augmentation of Thermotolerance in Primary Skin Fibroblasts from a Transgenic Pig Overexpressing the Porcine HSP70.2 (Asian-Aust. J. Ani. Sci. 18(1): 107-112, 2005)………………………………….......... 32 Chapter 4: Alteration of Arterial Blood Pressure and Myocardial Injury Induced by Whole Body Hyperthermia in Non-transgenic and Transgenic Pigs Expressing HSP70-GFP Fusion Protein (Submitted to the Journal of Experimental Biology)……………………………. 56 Chapter 5: General Discussion…………………………………... 88 Chapter 6: Conclusion…………………………………………… 99 Chapter 7: Literatures Cited…………………………………….. 101 Publication List…………………………………………………... 123

    Adams, J. E. 3rd, Sicard, G. A., Allen, B. T., Bridwell, K. H., Lenke, L. G., Davila-Roman, V. G., Bodor, G. S., Ladenson, J. H. and Jaffe, A. S. (1994). Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I. N. Engl. J. Med. 330, 670-674.
    Aiba-Masago, S., Baba, S., Li, R.-Y., Shinmura, Y., Kosugi, I., Arai, Y., Nishimura, M. and Tsutsui, Y. (1999). Murine cytomegalovirus immediate-early promoter directs astrocyte-specific expression in transgenic mice. Am. J. Pathol. 54, 735-743.
    Alpert, J. S. and Thygesen, K. (2000). Myocardial infarction redefined --- A consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction. Eur. Heart J. 21, 1502-1513.
    Becker, B. A., Knight, C. D., Veenhuizen, J. J. Jesse, G. W., Hedrick, H. B. and Baile, C. A. (1993). Performance, carcass composition, and blood hormones and metabolites of finishing pigs treated with porcine somatotropin in hot and cool environments. J. Anim. Sci. 71, 2375-2387.
    Beere, H., Wolf, B., Cain, K., Mosser, D., Mahboubi, A., Kuwana, T., Tailor, P., Morimoto, R., Cohen, G. and Green, D. (2000). Heat shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2, 469-475.
    Benjamin, I. J. and McMillan, D. R. (1998). Stress (heat shock) proteins. Circ. Res. 83, 117-132.
    Benjamin, I. J., Kroger, B., and Williams, R. S. (1990). Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc. Natl. Acad. Sci. USA 87, 6263-6267.
    Bidanel, J. P., Milan, D., Iannuccelli, N., Amigues, Y., Boscher, M. Y., Bourgeois, F., Caritez, J. C., Gruand, J., Le Roy, P., Lagant, H., Quintanilla, R., Renard, C., Gellin, J., Ollivier, L. and Chevalet, C. (2001). Detection of quantitative trait loci for growth and fatness in pigs. Genet. Sel. Evol. 33, 289-309.
    Blake, M. J., Buckley, A. R., Buckley, D. J., LaVoi, K. P. and Bartlett, T. (1994). Neural and endocrine mechanisms of cocaine-induced 70-kDa heat shock protein expression in aorta and adrenal gland. J. Pharmacol. Exp. Ther. 268, 522-529.
    Blake, M. J., Buckley, D. J. and Buckley, A. R. (1993). Dopaminergic regulation of heat shock protein-70 expression in adrenal gland and aorta. Endocrinology 132, 1063-1070.
    Blake, M. J., Klevay, L. M., Halas, E. S. and Bode, A. M. (1995). Blood pressure and heat shock protein expression in response to acute and chronic stress. Hypertension 25, 539-544.
    Chen, M. Y., Huang, S. Y., Lin, E.-C., Hseu, T. H. and Lee, W. C. (2003). Association of a single nucleotide polymorphism in the 5’-flanking region of porcine HSP70.2 with backfat thickness in Duroc breed. Asian-Aust. J. Anim. Sci. 16, 100-103.
    Chen, M. Y., Huang, S. Y., Tsou, H. L., Lin, E. C., Kuo, Y. H., Yang, P. C., Huang, T. Y. and Lee, W. C. (2000). Polymorphism in 5’-flanking region of porcine heat shock protein 70.2 gene. Anim. Genet. 31, 410-411.
    Chen, M. Y., Tu, C. F., Huang, S. Y., Lin, J. H., Tzang, B. S., Hseu, T. H. and Lee, W. C. (2005). Augmentation of thermotolerance in primary skin fibroblasts from a transgenic pig overexpressing the porcine HSP70.2. Asian-Aust. J. Anim. Sci. 18, 107-112.
    Chiang, H. L., Terlecky, S. R., Plant, C. P. and Dice, J. F. (1989). A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246, 382-385.
    Chyr, S. C. (1980). Swine selection index and direction of pig improvement. J. Chin. Soc. Anim. Sci. 9, 55-69.
    Collin, A., van Milgen, J., Dubois, S. and Noblet, J. (2001). Effect of high temperature on feeding behavior and heat production in group-housed young pigs. Br. J. Nutr. 86, 63-70.
    De Koning, D. J., Janss, L. L. G., Rattink, A. P., van Oers, P. A. M., de Vries, B. J., Groenen, M. A. M., van der Poel, J. J. de Groot, P. N., Brascamp, E. W. and van Arendonk, J. A. M. (1999). Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 152, 1679-1690.
    De Koning, D. J., Rattink, A. P., Harlizius, B., Groenen, M. A. M., Brascamp, E. W. and van Arendonk, J. A. M. (2001). Detection and characterization of quantitative trait loci for growth and reproduction in pigs. Livst. Prod. Sci. 72, 185-198.
    Dezeure, F., Vaiman, M. and Chardon, P. (1993). Characterization of a polymorphic heat shock protein 70 gene in swine outside the SLA major histocompatibility complex. Biochim. Biophys. Acta 1174, 17-26.
    Ellis, J. (1987). Proteins as molecular chaperones. Nature 328, 378-379.
    Ellis, R. J. and Hemmingsen, S. M. (1989). Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem. Sci. 14, 339-342.
    Feng, Y. J., Chen, C., Fallon, J. T., Lai, T., Chen, L., Knibbs, D. R. Waters, D.D. and Wu, A. H. B. (1998). Comparison of cardiac troponin I, creatine kinase-MB, and myoglobin for detection of acute ischemic myocardial injury in a swine model. Am. J. Clin. Pathol. 110, 70-77.
    Filatov, V. L., Katrukha, A. G., Bulargina, T. V. and Gusev, N. B. (1999). Troponin: structure, properties, and mechanism of functioning. Biochemistry 64, 969-985.
    Fishbein, M. C., Maclean, D. and Maroko, P. R. (1978). The histopathologic evolution of myocardial infarction. Chest. 73, 843-849.
    Franz, W.-M., Mueller, O. J., Hartong, R., Frey, N. and Katus, H. A. (1997). Transgenic animal models: new avenues in cardiovascular physiology. J. Mol. Med. 75, 115-129.
    Frey, M. A. B. and Kenney R. A. (1979). Cardiac response to whole-body heating. Aviat. Space Environ. Med. 50, 387-389.
    Fuquay, J. W. (1981). Heat stress as it affects animal production. J. Anim. Sci. 52, 164-174.
    Gabai, V. L., Meriin, A. B., Mosser, D. D., Caron, A. W., Rits, S., Shifrin, V. I. and Sherman, M. Y. (1997). HSP70 prevent activation of stress kinases: a novel pathway of cellular thermotolerance. J. Biol. Chem. 272, 18033-18037.
    Gabai, V. L., Meriin, A. B., Yaglom, J. A., Wei, J. Y., Mosser, D. D. and Sherman, M. Y. (2000a). Suppression of stress kinase JNK is involved in HSP72-mediated protection of myogenic cells from transient energy deprivation. HSP72 alleviates the stress-induced inhibition of JNK dephosphorylation. J. Biol. Chem. 275, 38088-38094.
    Gabai, V. L., Yaglom, J. A., Volloch, V., Meriin, A. B., Force, T., Koutroumanis, M., Massie, B., Mosser, D. D. and Sherman, M. Y. (2000b). Hsp72-mediated suppression of stress-kinase JNK is implicated in development of tolerance to caspase-independent cell death. Mol. Cell Biol. 20, 6826-6836.
    Gathiram, P., Gaffin, S. L., Brock-Utne, J. G. and Wells, M. T. (1987). Time course of endotoxemia and cardiovascular changes in heat-stressed primates. Aviat. Space Environ. Med. 58, 1071-1074.
    Gething, M. J. and Sambrook, J. (1992). Protein folding in the cell. Nature 355, 33-45.
    Grzimek, N. K. A., Podlech, J., Steffens, H.-P., Holtappels, R., Schmalz, S. and Reddehase, M. J. (1999). In vivo replication of recombinant murine cytomegalovirus driven by the paralogous major immediate-early promoter-enhancer of human cytomegalovirus. J. Virol. 73, 5043-5055.
    Hall, D. M., Oberley, T. D., Moseley, P. L., Buettner, G. R., Oberley, L. W., Weindruch, R. and Kregel, K. C. (2000). Caloric restriction improves thermotolerance and reduces hyperthermia-induced cellular damage in old rats. FASEB J. 14, 78-86.
    Hall, D. M., Xu, L., Drake, V. J., Oberley, L. W., Oberley, T. D., Moseley, P. L. and Kregel, K. C. (2000). Aging reduces adaptive capacity and stress protein expression in the liver after heat stress. J. Appl. Physiol. 89, 749-759.
    Hartl, F. (1996). Molecular chaperones in cellular protein folding. Nature 381, 571-579.
    Heitman, H. and Hughes, E. H. (1949). The effects of air temperature and relative humidity on the physical wellbeing of swine. J. Anim. Sci. 8, 171-181.
    Heitman, H., Kelly, C. F. and Bond, T. E. (1958). Ambient air temperature and weight gain in swine. J. Anim. Sci. 17, 62-67.
    Hightower, L. E. (1991). Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66, 191-197.
    Hightower, L. E., Sadis, S. E. and Takenaka, I. M. (1994). Interactions of vertebrate hsc70 and hsp70 with unfolded proteins and peptides. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Press.
    Hsia, L. C. and Lu, G. H. (1987). Performance of three way crossed pigs under hot and moderate cold environment. World Review of Animal Production XXIII, 9-13.
    Holme, D. W. and Coey, W. E. (1967). The effect of environmental temperature and method of feeding on performance and carcass composition of bacon pigs. Anim. Prod. 9, 209-218.
    Holmes, C. W. (1971). Growth and backfat depth of pigs kept at a high temperature. Anim. Prod. 13, 521-527.
    Huang, S. Y., Tsou, H. L., Kan, M. T., Lin, W. K. and Chi, C. S. (1995). Genetic study on leg weakness and its relationship with economic traits in central tested boars in subtropical area. Livestock Prod. Sci. 44, 53-59.
    Huang, S. Y., Kuo, Y. H., Lee, W. C., Tsou, H. L., Lee, Y. P., Chang, H. L., Wu, J. J. and Yang, P. C. (1999). Substantial decrease of heat-shock protein 90 precedes the decline of sperm motility during cooling of boar spermatozoa. Theriogenology 51, 1007-1016.
    Huang, Y. H. and Lee, Y. P. (1994). Genetic study of growth performances on group-tested gilts. J. Chin. Soc. Anim. Sci. 23, 221-234.
    Hutter, J. J., Mestril, Y., Tam, E. K. W., Sievers, R. E., Dillmann, W. H. and Wolfe, C. L. (1996). Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 94, 1408-1411.
    Itoh, S., Kurihara, Y., Ikeda, S., Suzuki, S. and Sukemori, S. (1992). Effect of environmental temperature on the growth and physiological response of piglets. Jpn. J. Swine Sci. 29, 139-144.
    Johnston, D., Opermann, H., Jackson, J. and Levinson, W. (1980). Induction of four proteins in chick embryo cells by sodium arsenite. J. Biol. Chem. 255, 6975-6980.
    Johnston, R. N. and Kucey, B. L. (1988). Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242, 1551-1554
    Kampinga, H. H. (1993). Thermotolerance in mammalian cell. Protein denaturation and aggregation, and stress proteins. J. Cell Sci. 104, 11-17.
    Kapp, D. S. and Lord, P. F. (1983). Thermal tolerance to whole body hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 9, 917-921.
    Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16483-16486.
    Kerner, T., Deja, M., Ahlers, O., Hildebrandt, B., Dieing, A., Riess, H., Wust, P. and Gerlach, H. (2002). Monitoring arterial blood pressure during whole body hyperthermia. Acta Anaesthesiol. Scand. 46, 561-566.
    Kilgour, R. D., Gariepy, P. and Rehel, R. (1993). Cardiovascular responses during recovery from exercise and thermal stress. Aviat. Space Environ. Med. 64, 224-229.
    Kim, K. S., Larsen, N., Short, T., Plastow, G. and Rothschild, M. (2000). A missense variant of the melanocortin 4 receptor (MC4R) gene is associated with fatness, growth and feed intake traits. Mamm. Genome 11, 131-135.
    King, Y. T, Lin, C. S., Lin, J. H. and Lee, W. C. (2002). Whole-body hyperthermia-induced thermotolerance is associated with the induction of heat shock protein 70 in mice. J. Exp. Biol. 205, 273-278.
    Knowlton, A. A., Brecher, P. and Apstein, C. S. (1991). Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J. Clin. Invest. 87, 139-147.
    Kregel, K. C. (2002). Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92, 2177-2186.
    Lambert, G. P., Gisolfi, C. V., Berg, D. J., Moseley, P. L., Oberley, L. W. and Kregel, K. C. (2002). Hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress. J. Appl. Physiol. 92, 1750-1761.
    Landry, J. and Chretien, P. (1983). Relationship between hyperthermia-induced heat-shock proteins and thermotolerance in Morris hepatoma cells. Can. J. Biochem. Cell Biol. 61, 428-437.
    Landry, J., Bernier, D., Chretien, P., Nicole, L. M., Tanguay, R. M. and Marceau, N. (1982). Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res. 42, 2457-2461.
    Laszlo, A. and Li, G. C. (1985). Heat resistant variants of Chinese hamster fibroblasts altered in expression of heat shock protein. Proc. Natl. Acad. Sci. USA 82, 8029-8033.
    Lee, C. K. and Piedrahita, J. A. (2003). Transgenesis and germ cell engineering in domestic animals. Asian-Aust. J. Anim. Sci. 16, 910-927.
    Lee, W. C., Lin, K. Y., Chiu, Y. T., Lin, J. H., Chen, H. C., Huang, H. C., Yang, P. C. Liu, S. K. and Mao, S. J. T. (1996). Substantial decrease of heat shock protein 90 in ventricular tissues of two sudden-death pigs with hypertrophic cardiomyopathy. FASEB J. 10, 1198-1204.
    Levinson, W., Oppermann, H. and Jackson, J. (1980). Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochem. Biophys. Acta 606, 170-180.
    Lewis, M. J. and Pelham, H. R. (1985). Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. Dur. Mol. Biol. Organ. J. 4, 3137-3143.
    Li, G. C. and Werb, Z. (1982). Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc. Natl. Acad. Sci. USA 79, 3218-3222.
    Li, G. C., Li, L., Liu, Y. K., Mak, J. Y., Chen, L. and Lee, W. M. F. (1991). Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding genes. Proc. Natl. Acad. Sci. USA 88, 1681-1685.
    Li, G. C., Petersen, N. S. and Mitchell, H. K. (1982). Induced thermal tolerance and heat shock protein synthesis in Chinese hamster ovary cells. Int. J. Radiat. Oncol. Biol. Phys. 8, 63-67.
    Lin, M. T. (1999). Pathogenesis of an experimental heatstoke model. Clin. Exp. Pharmacol. Physiol. 26, 826-827.
    Lindquist, S. (1986). The heat shock response. Annu. Rev. Biochem. 55, 1151-1191.
    Lindquist, S. and Craig, E. A. (1988). The heat-shock proteins. Annu. Rev. Genet. 22, 631-677.
    Loomis, W. F. and Wheelers, S. (1980). Heat shock response of Dictyostelium. Dev. Biol. 79, 399-408.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. L. (1951). Protein measurement with the Folin protein reagent. J. Biol. Chem. 193, 265-275.
    Maak, S., Petersen, K. and von Lengerker, G. (1998). Association of polymorphisms in the porcine HSP70 gene promoter with performance traits. Anim. Genet. 29(Suppl. 1), 71(Abstr.).
    Mair, J. (1999). Tissue release of cardiac markers: from physiology to clinical applications. Clin. Chem. Lab. Med. 37, 1077-1084.
    Marber, M. S., Mestril, R., Chi, S. H., Sayen, M. R., Yellon, D. M. and Dillmann, W. H. (1995). Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Invest. 95, 1446-1456.
    McGlone, J. J., Stansbury, W. F. and Tribble, L. F. (1987). Effects of heat and social stressors and within-pen weight varation on young pig performance and agonistic behavior. J. Anim. Sci. 65, 456-462.
    Mehta, H. B., Popovich, B. K. and Dillmann, W. H. (1988). Ischemia induces changes in the level of mRNAs coding for stress protein 71 and creatine kinase M. Circ. Res. 63, 512-517.
    Milarski, K. L. and Morimoto, R. I. (1989). Mutational analysis of the human HSP70 protein: distinct domains for nucleolar localization and adenosine triphosphate binding. J. Cell. Biol. 109, 1947-1962.
    Miller, M. J., Xuong, N.-H. and Geiduschek, E. P. (1979). A response of protein synthesis to temperature shift in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 76, 5222-5225.
    Mirkes, P. E., Cornel, L. M., Wilson, K. L. and Dillmann, W. H. (1999). Heat shock protein 70 (Hsp70) protects postimplantation murine embryos from the embryolethal effects of hyperthermia. Dev. Dyn. 214,159-170.
    Mizzen, L. A. and Welch, W. J. (1988). Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J. Cell Biol. 106, 1105-1116.
    Moalic, J. M., Bauters, C., Himbert, D., Bercovici, J., Mouas, C., Guicheney, P., Baudoin-Legros, M., Rappaport, L., Emanoil-Ravier, R., Mezger, V., et al. (1989) Phenylephrine, vasopressin and angiotensin II as determinants of proto-oncogene and heat-shock protein gene expression in adult rat heart and aorta. J. Hypertens. 7, 195-201.
    Morimoto, R. I., Tissieres, A. and Georgopoulos, C. (1994). Progress and perspectives on the biology of heat shock proteins and molecular chaperones. In: The Biology Heat Shock Proteins and Molecular Chaperones, edited by Morimoto R. I., Tissierws J. A., and Georgopoulos C. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
    Morrison, S. R. and Mount, L. E. (1971). Adaptation of growing pigs to changes in environmental temperature. Anim. Prod. 13, 51-57.
    Moseley, P. L. (1997). Heat shock proteins and heat adaptation of the whole organism. J. Appl. Physiol. 83, 1413-1417.
    Mosser, D. D., Caron, A. W., Bourget, L., Denis-Larose, C. and Massie, B. (1997). Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell Biol. 17, 5317-5327.
    Munro, S. and Pelham, H. R. (1984). Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hap70. EMBO J. 3, 3087-3093.
    Nollen, E. A., Brunsting, J. F., Roelofsen, H., Weber, L. A. and Kampinga, H. H. (1999). In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol. Cell Biol. 19, 2069-2079.
    Nunes, M., Yerles, M., Dezeure, F., Gellin, J., Chardon, P. and Vaiman, M. (1993). Isolation of four HSP70 genes in the pig and localization on Chromosome 7 and 14. Mamm. Genome 4, 247-251.
    Parsell, D. A. and Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437-439.
    Peelman, L. J., van De Weghe, A. R., Coppieters, W. R., van Zeveren, A. J. and Bouquet, Y. H. (1992). Complete nucleotide sequence of a porcine HSP70 gene. Immunogenetics 35, 286-289.
    Pelham, H. R. (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46, 959-961.
    Plumier, J. C. L., Ross, B. M., Currie, R. W., Angelidis, C. E., Kazlaris, H., Kollias, G. and Pagoulatos, G. N. (1995). Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J. Clin. Invest. 95, 1854-1860.
    Prabhakar, R., Petrashevskaya, N., Schwartz, A., Aronow, B., Boivin, G. P., Molkentin, J. D. and Wieczorek, D. F. (2003). A mouse model of familial hypertrophic cardiomyopathy caused by an alpha-tropomyosin mutation. Mol. Cell Biochem. 251, 33-42.
    Radford, N. B., Fina, M., Benjamin, I. J., Moreadith, R. W., Graves, K. H., Zhao, P., Gavva, S., Wiethoff, A., Sherry, A. D., Malloy, C. R. and Williams, R. S. (1996). Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 2339-2342.
    Rattink, A. P.; De Koning, D. J., Faivre, M., Harlizius, B., Van Arendonk, J. A. and Groenen, M. A. (2000). Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mamm. Genome 11, 656-61.
    Riabowol, K. T., Mizzen, L. A. and Welch, W. J. (1988). Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science 242, 433-436.
    Rohrer, G. A. (2000). Identification of quantitative trait loci affecting birth characters and accumulation of backfat and weight in a Meishan – White composite resource population. J. Anim. Sci. 78, 2547-2553.
    Rohrer, G. A. and Keele, J. W. (1998). Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits. J. Anim. Sci. 76, 2247-2254.
    Ruohonen-Lehto, M. K., Rothschild, M. F. and Larson, R. G. (1993). Restriction fragment length polymorphisms at the heat shock protein HSP70 gene(s) in pigs. Anim. Genet. 24, 67-68.
    Saleh, A., Srinivasula, S., Balkir, L., Robbins, P. and Alnemri, E. (2000). Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat. Cell Biol. 2, 476-483.
    SAS Institute. (1989). SAS User’s Guide: Statistics. Release 6.3 ed. SAS Institute Inc., Cary, North Carolina, U.S.A.
    Schmitt, J. P., Kamisago, M., Asahi, M., Li, G. H., Ahmad, F., Mende, U., Kranias, E. G., MacLennan, D. H., Seidman, J.G. and Seidman, C. E. (2003). Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299, 1410-1413.
    Schwerin, M., Hagendorf, A., Furbass, R. and Teuscher, F. (1999). The inducible stress protein 70.2 gene – A candidate gene for stress susceptibility in swine. Arch. Tierz. 42, 61-66.
    Schwerin, M., Maak, S., Kalbe, C. and Fuerbass, R. (2001). Functional promoter variants of highly conserved inducible hsp70 genes significantly affect stress response. Biochim. Biophys. Acta 1522, 108-111.
    Sellier, P. (1998). Genetics of meat and carcass traits. The Genetics of the Pig (EDs Rothschild, M. F. and Ruvinsky, A.), CAB International, Oxon, U.K., 463-510.
    Song, J., Takeda, M. and Morimoto, R. I. (2001). Bag1-Hsp70 mediates a physiological stress signaling pathway that regulates Raf-1/ERK and cell growth. Nat. Cell Biol. 3, 276-282.
    Stege, G. J., Li, L., Kampinga, H. H., Konings, A. W. and Li, G. C. (1994). Importance of the ATP-binding domain and nucleolar localization domain of HSP72 in the protection of nuclear proteins against heat-induced aggregation. Exp. Cell Res. 214, 279-284.
    Strub, G., Weniger, J. H. Tawfik, E. S. and Steinhauf, D. (1976). The effect of high environmental temperatures on fattening performance and growth of boars. Livst. Prod. Sci. 3, 65-74.
    Theodorakis, N. G., Drujan, D. and De Maio, A. (1999). Thermotolerant cells show an attenuated expression of Hsp70 after heat shock. J. Biol. Chem. 274, 12081-12086.
    Trost, S. U., Omens, J. H., Karlon, W. J., Meyer, M., Mestril, R., Covell, J. W. and Dillmann, W. H. (1998). Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J. Clin. Invest. 101, 855-862.
    Tsou, H. L., Kan, M. T., Chu, W. Y., Huang, Y. H. and Sun, H. F. (1988). Main environmental factors affecting growth performances in a nucleic swine herd. Annual Report, Pig Research Institute Taiwan pp.25-27.
    Tu, C. F., Tsuji, K., Lee, K. H., Chu, R., Sun, T. J., Lee, Y. C., Weng, C. N. and Lee, C. J. (1999). Generation of HLA-DP transgenic pigs for the study of xenotransplantation. Int. Surg. 84, 176-182.
    Udelsman, R., Blake, M. J., Stagg, C. A., Li, D. G., Putney, D. J. and Holbrook, N. J. (1993). Vascular heat shock protein expression in response to stress. Endocrine and autonomic regulation of this age-dependent response. J. Clin. Invest. 91, 465-473.
    Ulmasov, K. A., Shammakov, S., Karaev, K. and Evgen’ev, M. B. (1992). Heat shock proteins and thermotolerance in lizard. Proc. Natl. Acad. Sci. USA 98, 1666-1670.
    Urano, M. (1986). Kinetics of thermotolerance in normal and tumor tissues: areview. Cancer Res. 46, 474-482.
    Vertrees, R. A., Leeth, A., Girouard, M., Roach, J. D. and Zwischenberger, J. B. (2002). Whole-body hyperthermia: a review of theory, design and application. Perfusion 17, 279-290.
    Vikstrom, K. L., Factor, S. M. and Leinwand, L.A. (1996). Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol. Med. 2, 556-567.
    Wang, L., Yu, T. P., Tuggle, C. K., Liu, H. G. and Rothschild, M. F. (1998). A directed search for quantitative trait loci on chromosomes 4 and 7 in the pig. J. Anim. Sci. 76, 2560-2567.
    Wang, X., Osinska, H., Dorn II, G. W., Nieman, M., Lorenz, J. N. Gerdes, A. M., Witt, S., Kimball, T., Gulick, J. and Robbins, J. (2001). Mouse model of desmin-related cardiomyopathy. Circulation 103, 2402-2407.
    Welch, W. J. (1992). Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol. Rev. 72, 1063-1081.
    Weshler, Z., Kapp, D. S., Lord, P. F. and Hayes T. (1984). Development and decay of systemic thermotolerance in rats. Cancer Res. 44, 1347-1351.
    Wettemann, R. P. and Bazer, F. W. (1985). Influence of environmental temperature on prolificacy of pigs. J. Reprod. Fertil. Suppl. 33, 199-208.
    Xu, Q. and Wick, G. (1996). The role of heat shock proteins in protection and pathophysiology of the arterial wall. Molecular Medicine Today 2, 372-379.
    Xu, Q., Liu, Y., Gorospe, M., Udelsman, R. and Holbrook, N. J. (1996). Acute hypertension activates mitogen-activated protein kinases in arterial wall. J. Clin. Invest. 97, 508-514.
    Xu, Z. L., Mizuguchi, H., Ishii-Watabe, A., Uchida, E., Mayumi, T. and Hayakawa, T. (2001). Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 272, 149-156.
    Zanke, B. W., Boudreau, K., Rubie, E., Winnet, E., Tibbles, L. A., Zon, L., Kyriakis, J., Liu, F. F. and Woodgett, J. R. (1996). The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr. Biol. 6, 606-613.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE