簡易檢索 / 詳目顯示

研究生: 陳建穎
Jian-Ying Chen
論文名稱: 中低溫式氧化釤-鈰固態氧化物燃料電池系統多尺度模擬與設計
Multi-Scale Modeling and Design of an Intermediate-Temperature Samarium-Doped-Ceria SOFC System
指導教授: 洪哲文
Che-Wun Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 85
中文關鍵詞: 燃料電池電解質模擬
外文關鍵詞: SOFC, SDC, electrolyte, modeling
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以多尺度(multi-scale)方式研究固態氧化物燃料電池(solid oxide fuel cell, SOFC)性能,並設計其周邊系統。其中微觀尺度方面,研究的是固態電解質氧化釤摻雜二氧化铈(samaria-doped ceria, SDC)中氧離子傳導率。固態氧化物燃料電池主要利用氧離子在電解質中單向傳遞來發電,但因目前所使用的材料性質,氧離子必須在高溫環境下才能傳遞,其應用和設計上就受到了許多限制。所以本論文以分子動力學方法來模擬新的低溫運作電解質材料SDC,嘗試以模擬的角度來解釋分子構造與最後性能的關係。
    本論文分別改變摻雜濃度和操作溫度兩方向研究SDC。首先將873K作為基礎溫度,模擬摻雜5.36mol%、11.34mol%、17.39mol%和25.58mol% 氧化釤的SDC,嘗試從分子運動的角度來解釋為何會有最佳摻雜濃度的出現,並與實驗結果做比較。另一方面以摻雜11.34mol%氧化釤為基礎,模擬系統溫度分別在673K,773K,873K,973K和1073K狀態下操作,結果當溫度降低時氧離子傳導率也會降低,而673K時,SDC仍可操作,此時傳統YSZ(yttria-stablized zirconia)已無作用。
    在巨觀尺度(macro-scale)方面,本論文研究固態氧化物燃料電池堆及其附加裝置的整體系統模擬。以目前實驗室擁有的YSZ-SOFC電池堆系統為對象,實際實驗量測性能,並在電腦上建模做數值模擬。驗證電腦模式的正確性和有效性後,將分子動力學模擬所得到的SDC奈米性質代入巨觀模式中,並與YSZ-SOFC性能做比較,了解改變電解質對系統性能的影響。本論文研究成果主要在自行建立多尺度模擬工具,以提供現在及未來固態氧化物燃料電池材料及系統設計改進。


    摘要..........................................................................................................Ⅰ 致謝..........................................................................................................Ⅱ 目錄..........................................................................................................Ⅲ 表目錄......................................................................................................Ⅴ 圖目錄......................................................................................................Ⅵ 參數定義..................................................................................................IX 第一章 緒論.............................................................................................1 1.1 前言.............................................................................................1 1.2 文獻回顧.....................................................................................2 1.3 研究目的.....................................................................................5 第二章 分子動力學模擬氧化釤-铈電解質............................................7 2.1 分子動力學..................................................................................7 2.2 初始模型結構..............................................................................7 2.3 初始速度與修正........................................................................10 2.4 勢能模型....................................................................................11 2.5 預測修正法................................................................................15 2.6 平均平方位移及離子傳導性....................................................17 2.7 徑向分佈函數............................................................................18 2.8 模擬參數....................................................................................19 2.9 模擬步驟....................................................................................20 2.9.1 初始化過程.....................................................................21 2.9.4 平衡過程及產值過程.....................................................22 第三章 固態氧化物燃料電池系統計算流體力學模擬與實驗............23 3.1 燃料電池系統............................................................................23 3.2 基本假設....................................................................................25 3.3 統御方程式................................................................................26 3.3.1 不可壓縮流.................................................................26 3.3.2 多孔材質.........................................................................27 3.3.3 質量傳輸.........................................................................28 3.3.4 性能計算.........................................................................28 3.3.5 Newton-Raphson method……..…..………......………...33 3.3.6 Multigrid Method.....……......…………………...……...33 3.4 測試機台…………………….………......…..……………..…34 第四章 結果與討論………..……........………………......………....…36 4.1 分子動力學……………………………………….......……….36 4.1.1 系統平衡………………………………………....……36 4.1.2 離子運動行為……………………………………....…40 4.1.3 平均平方位移與氧離子傳導性……………………....43 4.1.4 徑向分佈函數…………………………………....……46 4.2 計算流體力學……………………………………………........52 4.2.1 壓力場分佈………………………………..………….....52 4.2.2 速度場分佈……………..…………………………….....59 4.2.3 溫度場分佈………………………………………….......66 4.2.4 濃度場分佈………………………………………….......69 4.2.5 性能比較………………………………………………...74 第五章 總結與未來工作………..……………………………....…......80 參考文獻..................................................................................................83

    參考文獻
    1. K. Yamashita, K. V. Ramanujachary, and M. Greenblatt, “Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics”, Solid State Ionics, 81, p.p.53-60, 1995.
    2. S. Sameshima, T. Ichikawa, M. Kawaminami, and Y. Hirata, “Thermal and mechanical properties of rare earth-doped ceria ceramics”, Materials Chemistry and Physics, 61, p.p. 31-35, 1999.
    3. C. Peng, Y. Zhang, Z. W. Cheng, X. Cheng, and J. Meng, “Nitrate-citrate combustion synthesis and properties of Ce1-xSmxO2-x/2 solid solutions”, Journal of Materials Science: Materials in Electronics, 13, p.p.757-762, 2002.
    4. D. Perez-Coll, P. Nunez, J. R. Frade, and J. C. C. Abrantes, “Conductivity of CGO and CSO ceramics obtained from freeze-dried precursors”, Electrochimica Acta, 48, p.p.1551-1557, 2003.
    5. L. Haibin, X. Changrong, Z. Minhui, Z. Zuoxing, and M. Guangyao, “Reactive Ce0.8Sm0.2O1.9 powder synthesized by carbonate coprecipitation: Sintering and electrical characteristics”, Acta Materialia, 54, p.p. 721-727, 2006.
    6. G. V. Lewis, and C. R. A. Catlow, “Potential Models for Ionic Oxides”, Journal of Physics C: Solid State Physics, 18, p.p.1149-1161, 1985.
    7. L. Minervini, R. W. Grimes, K. E. Sickafus, and C. Randall, “Disorder in Pyrochlore Oxides”, Journal of American Ceramic Society, 83, p.p. 1873-1885, 2000.
    8. Y. Yamamura, S. Kawasaki, and H. Sakai, “Molecula dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia”, Solid state ionics, 126, p.p 181-189, 1999.
    9. C. H. Cheng, Y. W. Cheng, C. W. Hong, “Multiscale parametric studies on the transport phenomenon of a solid oxide fuel cell ”, Journal of fuel cell science and technology, 2, p.p 219-225, 2005
    10. D. L. Damm, A. G. Fedorov, “Reduced-order transient thermal modeling for SOFC heating and cooling”, Journal of power sources, 159, p.p 956-967, 2006
    11. G. Wang, Y. Yang, H. Zhang, W. Xia, “3-D model of thermo-fluid and electrochemical for planar SOFC”, Journal of power sources, 167, p.p 398-405, 2007
    12. T. P. Perumal, V. Sridhar, K. P. N. murthy, K. S. Easwarakumar, and S. Ramasamy, “Molecular dynamics simulation of oxygen ion diffusion in yttria-stabilized zirconia”, Physica A, 309, p.p 35-44, 2002.
    13. B. P. Mandal, V. Grover, and A. K. Tyagi, “Phase relations, lattice thermal expansion in Ce1-xEuxO2-x/2 and Ce1-xSmxO2-x/2 systems and stabilization of cubic RE2O3 (RE: Eu, Sm)”, Materials Science and Engineering A, 430, p.p 120-124, 2006.
    14. “Theory and Modeling Guide Volume III: ADINA CFD & FSI”, ADINA R&D, Inc. , 2005.
    15. W. Hackbusch., “Multigrid Methods and Applications”, New York, NY: Springer-Verlag, 1985.
    16. S. Kakac, A. Pramuanjaroenkil, X. Y. Zhou, “A review of numerical modeling of solid oxide fuel cells”, International Journal of Hydrogen Energy, 32, p.p 761-786, 2007
    17. “Fuel cell handbook, fifth edition”, EG&G Services Parsons, Inc.,2000
    18. 鄭欽獻(洪哲文), “燃料電池電解質奈米尺度離子動態輸送模擬”, 國立清華大學博士論文, 2007
    19. P. Lisbona, A. Corradetti, R. Bove, P. Lunghi, “Analysis of a solid oxide fuel cell system for combined heat and power applications under non-nominal conditions ”, Electrochimica Acta, 53, p.p 1920-1930, 2007
    20. E. Achenbach, “Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack”, Journal of Power Sources, 49, p.p 333-348, 1994
    21. P. Costamagna, K. Honegger, “Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization”, Journal of Electrochemical Society, 145, p.p 3995-4007, 1998
    22. S. H. Chan, K. A. Khor, Z. T. Xia, “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness”, Journal of Power Sources, 93, p.p 130-140, 2001
    23. V. M. Janardhanan, O. Deutschmann, “CFD analysis of a solid oxide fuel cell with internal reforming : coupled interactions of transport, heterogeneous catalysis and electrochemical processes”, Journal of Power Sources, 162, p.p 1192-1202, 2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE