研究生: |
陳建穎 Jian-Ying Chen |
---|---|
論文名稱: |
中低溫式氧化釤-鈰固態氧化物燃料電池系統多尺度模擬與設計 Multi-Scale Modeling and Design of an Intermediate-Temperature Samarium-Doped-Ceria SOFC System |
指導教授: |
洪哲文
Che-Wun Hong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 燃料電池 、電解質 、模擬 |
外文關鍵詞: | SOFC, SDC, electrolyte, modeling |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以多尺度(multi-scale)方式研究固態氧化物燃料電池(solid oxide fuel cell, SOFC)性能,並設計其周邊系統。其中微觀尺度方面,研究的是固態電解質氧化釤摻雜二氧化铈(samaria-doped ceria, SDC)中氧離子傳導率。固態氧化物燃料電池主要利用氧離子在電解質中單向傳遞來發電,但因目前所使用的材料性質,氧離子必須在高溫環境下才能傳遞,其應用和設計上就受到了許多限制。所以本論文以分子動力學方法來模擬新的低溫運作電解質材料SDC,嘗試以模擬的角度來解釋分子構造與最後性能的關係。
本論文分別改變摻雜濃度和操作溫度兩方向研究SDC。首先將873K作為基礎溫度,模擬摻雜5.36mol%、11.34mol%、17.39mol%和25.58mol% 氧化釤的SDC,嘗試從分子運動的角度來解釋為何會有最佳摻雜濃度的出現,並與實驗結果做比較。另一方面以摻雜11.34mol%氧化釤為基礎,模擬系統溫度分別在673K,773K,873K,973K和1073K狀態下操作,結果當溫度降低時氧離子傳導率也會降低,而673K時,SDC仍可操作,此時傳統YSZ(yttria-stablized zirconia)已無作用。
在巨觀尺度(macro-scale)方面,本論文研究固態氧化物燃料電池堆及其附加裝置的整體系統模擬。以目前實驗室擁有的YSZ-SOFC電池堆系統為對象,實際實驗量測性能,並在電腦上建模做數值模擬。驗證電腦模式的正確性和有效性後,將分子動力學模擬所得到的SDC奈米性質代入巨觀模式中,並與YSZ-SOFC性能做比較,了解改變電解質對系統性能的影響。本論文研究成果主要在自行建立多尺度模擬工具,以提供現在及未來固態氧化物燃料電池材料及系統設計改進。
參考文獻
1. K. Yamashita, K. V. Ramanujachary, and M. Greenblatt, “Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics”, Solid State Ionics, 81, p.p.53-60, 1995.
2. S. Sameshima, T. Ichikawa, M. Kawaminami, and Y. Hirata, “Thermal and mechanical properties of rare earth-doped ceria ceramics”, Materials Chemistry and Physics, 61, p.p. 31-35, 1999.
3. C. Peng, Y. Zhang, Z. W. Cheng, X. Cheng, and J. Meng, “Nitrate-citrate combustion synthesis and properties of Ce1-xSmxO2-x/2 solid solutions”, Journal of Materials Science: Materials in Electronics, 13, p.p.757-762, 2002.
4. D. Perez-Coll, P. Nunez, J. R. Frade, and J. C. C. Abrantes, “Conductivity of CGO and CSO ceramics obtained from freeze-dried precursors”, Electrochimica Acta, 48, p.p.1551-1557, 2003.
5. L. Haibin, X. Changrong, Z. Minhui, Z. Zuoxing, and M. Guangyao, “Reactive Ce0.8Sm0.2O1.9 powder synthesized by carbonate coprecipitation: Sintering and electrical characteristics”, Acta Materialia, 54, p.p. 721-727, 2006.
6. G. V. Lewis, and C. R. A. Catlow, “Potential Models for Ionic Oxides”, Journal of Physics C: Solid State Physics, 18, p.p.1149-1161, 1985.
7. L. Minervini, R. W. Grimes, K. E. Sickafus, and C. Randall, “Disorder in Pyrochlore Oxides”, Journal of American Ceramic Society, 83, p.p. 1873-1885, 2000.
8. Y. Yamamura, S. Kawasaki, and H. Sakai, “Molecula dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia”, Solid state ionics, 126, p.p 181-189, 1999.
9. C. H. Cheng, Y. W. Cheng, C. W. Hong, “Multiscale parametric studies on the transport phenomenon of a solid oxide fuel cell ”, Journal of fuel cell science and technology, 2, p.p 219-225, 2005
10. D. L. Damm, A. G. Fedorov, “Reduced-order transient thermal modeling for SOFC heating and cooling”, Journal of power sources, 159, p.p 956-967, 2006
11. G. Wang, Y. Yang, H. Zhang, W. Xia, “3-D model of thermo-fluid and electrochemical for planar SOFC”, Journal of power sources, 167, p.p 398-405, 2007
12. T. P. Perumal, V. Sridhar, K. P. N. murthy, K. S. Easwarakumar, and S. Ramasamy, “Molecular dynamics simulation of oxygen ion diffusion in yttria-stabilized zirconia”, Physica A, 309, p.p 35-44, 2002.
13. B. P. Mandal, V. Grover, and A. K. Tyagi, “Phase relations, lattice thermal expansion in Ce1-xEuxO2-x/2 and Ce1-xSmxO2-x/2 systems and stabilization of cubic RE2O3 (RE: Eu, Sm)”, Materials Science and Engineering A, 430, p.p 120-124, 2006.
14. “Theory and Modeling Guide Volume III: ADINA CFD & FSI”, ADINA R&D, Inc. , 2005.
15. W. Hackbusch., “Multigrid Methods and Applications”, New York, NY: Springer-Verlag, 1985.
16. S. Kakac, A. Pramuanjaroenkil, X. Y. Zhou, “A review of numerical modeling of solid oxide fuel cells”, International Journal of Hydrogen Energy, 32, p.p 761-786, 2007
17. “Fuel cell handbook, fifth edition”, EG&G Services Parsons, Inc.,2000
18. 鄭欽獻(洪哲文), “燃料電池電解質奈米尺度離子動態輸送模擬”, 國立清華大學博士論文, 2007
19. P. Lisbona, A. Corradetti, R. Bove, P. Lunghi, “Analysis of a solid oxide fuel cell system for combined heat and power applications under non-nominal conditions ”, Electrochimica Acta, 53, p.p 1920-1930, 2007
20. E. Achenbach, “Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack”, Journal of Power Sources, 49, p.p 333-348, 1994
21. P. Costamagna, K. Honegger, “Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization”, Journal of Electrochemical Society, 145, p.p 3995-4007, 1998
22. S. H. Chan, K. A. Khor, Z. T. Xia, “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness”, Journal of Power Sources, 93, p.p 130-140, 2001
23. V. M. Janardhanan, O. Deutschmann, “CFD analysis of a solid oxide fuel cell with internal reforming : coupled interactions of transport, heterogeneous catalysis and electrochemical processes”, Journal of Power Sources, 162, p.p 1192-1202, 2006