簡易檢索 / 詳目顯示

研究生: 張浩新
Chang, Hao-Hsin
論文名稱: CMOS-MEMS接觸式開關元件的設計與特性探討
The Design and Characterization of CMOS-MEMS Metal-Contact Switches
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 方維倫
陳榮順
張嘉展
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 61
中文關鍵詞: 射頻微機電開關接觸式開關微機電致動器靜電式驅動元件CMOS-MEMS製程
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用國家晶片中心所提供的台灣積體電路公司0.18μm CMOS製程服務,並採用靜電驅動機制,成功實現了直流接觸式微機電系統開關元件。在結構設計上,我們使用平板開關結構做為開關元件的主體,提供非常一致的垂直位移以確保觸點區域的接觸品質。而折疊式彈簧則提供較低的彈簧剛性,同時也減緩了殘餘應力所造成的翹曲變形,用以大幅降低吸附電壓。在後製程上,使用複合的濕式蝕刻方式,保留了開關電極周圍的二氧化矽材料,使得結構更能抵抗來自環境的外力。而在需要有金屬接觸的區域留下了氮化鈦/鈦薄膜,使得微機電系統開關元件能夠利用化學活性較低的氮化鈦/鈦來實現金屬接觸。本論文最大的貢獻在於使用標準CMOS製程首次實現接觸式開關,而毋須使用額外的黃光微影或金屬沈積製程,相信對於亟需整合理想開關功能的CMOS電路而言,提供了一有效解決方案。
    本論文所設計的開關元件之面積為295×225 μm2,目前所量測到的最低吸附電壓為21V,接觸電阻為368Ω,切換時間小於10μs,回復時間落在18μs。在0.1–10MHz頻率下的隔離度和插入損耗則分別為84.03–71.88dB和13.38–16.15dB。


    第一章 前言 1.1研究背景 1.2研究動機 1.3文獻回顧 第二章 理論分析 2.1元件設計 開關元件類別 觸點材料 開關結構 2.2機械模型 結構模型 彈簧剛性 吸附電壓 切換時間 2.3電路模型 開關電路 切換能量 第三章 製程 3.1製程平台 3.2製程流程 3.3製程結果 3.4材料分析 3.5結果討論 第四章 量測 4.1射頻量測 4.2光學量測 4.3電性量測 4.4機械量測 第五章 結論 文獻參考

    [1] G. M. Rebeiz, RF MEMS Theory, Design, and Technology. Hoboken, NJ: Wiley, 2003.
    [2] L. E. Larson, R. H. Hackett, M. A. Melendes, and R. F. Lohr, “Micromachined microwave actuator (MIMAC) technology-a new tuning approach for microwave integrated circuits,” Dig. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp., pp. 27-30, Jun. 1991.
    [3] C. Goldsmith, J. Randall, S. Eshelman, Lin, T. H.; D. Denniston, S. Chen, and B. Norvell, “Characteristics of micromachined switches at microwave frequencies,” Dig. IEEE Int. Microwave Symp., vol. 2, pp. 1141-1144, Jun. 1996.
    [4] R. E. Mihailovich, M. Kim, J. B. Hacker, E. A. Sovero, J. Studer, J. A. Higgins, and J.F. DeNatale, “MEM relay for reconfigurable RF circuits,” IEEE Microwave and Wireless Components Lett., vol. 11, no. 2, pp. 53-55, Feb. 2001.
    [5] S. P. Pacheco, L. P. B. Katehi, C. T.-C. Nguyen, “Design of low actuation voltage RF MEMS switch,” Dig. IEEE Int. Microwave Symp., vol. 1, pp. 165-168, 2000.
    [6] P. M. Zavracky, N. E. McGruer, R. H. Morrison, and D. Potter, “Microswitches and microrelays with a view toward microwave applications,” Int. J. RF Microwave Computer-Aided Eng., vol. 9, pp. 338-347, July 1999.
    [7] S. Duffy, C. Bozler, S. Rabe, J. Knecht, L. Travis, P. Wyatt, C. Keast, and M. Gouker, “MEMS microswitches for reconfigurable microwave circuitry,” IEEE Microwave and Wireless Components Lett., vol. 11, no. 3, pp. 106-108, Mar. 2001.
    [8] G. M. Rebeiz, and J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microwave Mag., vol. 2, no. 4, pp. 59-71, Dec. 2001.
    [9] G. M. Rebeiz, G. L. Tan, and J. S. Hayden, “RF MEMS phase shifters: Design and applications,” IEEE Microwave Mag., vol. 3, no. 2, pp. 72-81, June 2002.
    [10] H. Sedaghat-Pisheh, J. Kim, and G. M. Rebeiz, “A novel stress-gradient-robust metal-contact switch,” IEEE Int. Microelectromech. Syst. Conf., pp. 27-30, Jan. 2009.
    [11] M. Sterner, N. Roxhed, G. Stemme, and J. Oberhammer, “Static zero-power-consumption coplanar waveguide embedded DC-to-RF metal-contact MEMS switches in two-port and three-port configuration,” IEEE Transactions on Electron Devices, vol. 57, no. 7, pp. 1659-1669, July 2010.
    [12] “RF MEMS switch. Omron Electronic Components LLC. Schaumburg,” [Online]. Available: http://www.components.omron.com
    [13] “Advantest,” [Online]. Available: http://www.advantest.co.jp/news/press-2011/
    20120319/en-index.shtml
    [14] “Baolab Microsystems,” [Online]. Available: http://www.baolab.com/‎
    [15] S. Touati, N. Lorphelin, A. Kanciurzewski, R. Robin, A. S. Rollier, O. Millet, and K. Segueni, “Low actuation voltage totally free flexible RF MEMS switch with antistiction system,” Design, Test, Integration and Packaging of MEMS/MOEMS Symp., pp.66-70, Apr. 2008.
    [16] J. T. Huang, Y. K. Hsu, Y. C. Lo, K. Y. Lee, C. K. Chen, and T. C. Tsai, “Design and fabrication of low-insertion loss and high-isolation CMOS-MEMS switch for microwave applications,” Microsystems Packaging Assembly and Circuits Technology Conf., pp. 1-3, Oct. 2010.
    [17] C. C. Chang, S. C. Hsieh, C. H. Chen, C. Y. Huang, C. H. Yao, and C. C. Lin, “Design of millimeter-wave MEMS-based reconfigurable front-end circuits using the standard CMOS technology,” J. Micromech. Microeng., vol. 21, no. 12, pp. 125011, 2011.
    [18] G. M. Rebeiz, C. D. Patel, S. K. Han, C. H. Ko, and K. M. J. Ho, “The search for a reliable MEMS switch?” IEEE Microwave Mag., vol. 14, no. 1, pp. 57-67, Jan.-Feb. 2013.
    [19] MEMS & Nanotechnology Exchange: http://www.memsnet.org/material/
    [20] K. V. Caekenberghe, “Modeling RF MEMS devices,” IEEE Microwave Mag., vol. 13, no. 1, pp. 83-110, Jan.-Feb. 2012.
    [21] W. C. Wong, I. A. Azid, and B. Y. Majlis, “Theoretical analysis of stiffness constant and effective mass for a round-folded beam in MEMS accelerometer,” Journal of Mechanical Engineering, vol. 57, pp. 517-525, 2011.
    [22] M. Andrews, I. Harris, and G. Turner, “A comparison of squeeze-film theory with measurements on a microstructure,” Sensors and Actuators A: Physical, vol. 36, pp. 79-87, 1993.
    [23] C. D. Patel, and G. M. Rebeiz, “A high power (>5 W) temperature stable RF MEMS metal-contact switch with orthogonal anchors and force-enhancing stoppers,” Dig. IEEE Int. Microwave Symp., pp. 1-4, Jun. 2011.
    [24] T. Fujiwara, T. Seki, F. Sato, and M. Oba, “Development of RF-MEMS ohmic contact switch for mobile handsets applications,” Proc. European Microwave Conf., vol. 3, pp. 180-183, Oct. 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE