研究生: |
張浩新 Chang, Hao-Hsin |
---|---|
論文名稱: |
CMOS-MEMS接觸式開關元件的設計與特性探討 The Design and Characterization of CMOS-MEMS Metal-Contact Switches |
指導教授: |
李昇憲
Li, Sheng-Shian |
口試委員: |
方維倫
陳榮順 張嘉展 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 射頻微機電開關 、接觸式開關 、微機電致動器 、靜電式驅動元件 、CMOS-MEMS製程 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用國家晶片中心所提供的台灣積體電路公司0.18μm CMOS製程服務,並採用靜電驅動機制,成功實現了直流接觸式微機電系統開關元件。在結構設計上,我們使用平板開關結構做為開關元件的主體,提供非常一致的垂直位移以確保觸點區域的接觸品質。而折疊式彈簧則提供較低的彈簧剛性,同時也減緩了殘餘應力所造成的翹曲變形,用以大幅降低吸附電壓。在後製程上,使用複合的濕式蝕刻方式,保留了開關電極周圍的二氧化矽材料,使得結構更能抵抗來自環境的外力。而在需要有金屬接觸的區域留下了氮化鈦/鈦薄膜,使得微機電系統開關元件能夠利用化學活性較低的氮化鈦/鈦來實現金屬接觸。本論文最大的貢獻在於使用標準CMOS製程首次實現接觸式開關,而毋須使用額外的黃光微影或金屬沈積製程,相信對於亟需整合理想開關功能的CMOS電路而言,提供了一有效解決方案。
本論文所設計的開關元件之面積為295×225 μm2,目前所量測到的最低吸附電壓為21V,接觸電阻為368Ω,切換時間小於10μs,回復時間落在18μs。在0.1–10MHz頻率下的隔離度和插入損耗則分別為84.03–71.88dB和13.38–16.15dB。
[1] G. M. Rebeiz, RF MEMS Theory, Design, and Technology. Hoboken, NJ: Wiley, 2003.
[2] L. E. Larson, R. H. Hackett, M. A. Melendes, and R. F. Lohr, “Micromachined microwave actuator (MIMAC) technology-a new tuning approach for microwave integrated circuits,” Dig. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp., pp. 27-30, Jun. 1991.
[3] C. Goldsmith, J. Randall, S. Eshelman, Lin, T. H.; D. Denniston, S. Chen, and B. Norvell, “Characteristics of micromachined switches at microwave frequencies,” Dig. IEEE Int. Microwave Symp., vol. 2, pp. 1141-1144, Jun. 1996.
[4] R. E. Mihailovich, M. Kim, J. B. Hacker, E. A. Sovero, J. Studer, J. A. Higgins, and J.F. DeNatale, “MEM relay for reconfigurable RF circuits,” IEEE Microwave and Wireless Components Lett., vol. 11, no. 2, pp. 53-55, Feb. 2001.
[5] S. P. Pacheco, L. P. B. Katehi, C. T.-C. Nguyen, “Design of low actuation voltage RF MEMS switch,” Dig. IEEE Int. Microwave Symp., vol. 1, pp. 165-168, 2000.
[6] P. M. Zavracky, N. E. McGruer, R. H. Morrison, and D. Potter, “Microswitches and microrelays with a view toward microwave applications,” Int. J. RF Microwave Computer-Aided Eng., vol. 9, pp. 338-347, July 1999.
[7] S. Duffy, C. Bozler, S. Rabe, J. Knecht, L. Travis, P. Wyatt, C. Keast, and M. Gouker, “MEMS microswitches for reconfigurable microwave circuitry,” IEEE Microwave and Wireless Components Lett., vol. 11, no. 3, pp. 106-108, Mar. 2001.
[8] G. M. Rebeiz, and J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microwave Mag., vol. 2, no. 4, pp. 59-71, Dec. 2001.
[9] G. M. Rebeiz, G. L. Tan, and J. S. Hayden, “RF MEMS phase shifters: Design and applications,” IEEE Microwave Mag., vol. 3, no. 2, pp. 72-81, June 2002.
[10] H. Sedaghat-Pisheh, J. Kim, and G. M. Rebeiz, “A novel stress-gradient-robust metal-contact switch,” IEEE Int. Microelectromech. Syst. Conf., pp. 27-30, Jan. 2009.
[11] M. Sterner, N. Roxhed, G. Stemme, and J. Oberhammer, “Static zero-power-consumption coplanar waveguide embedded DC-to-RF metal-contact MEMS switches in two-port and three-port configuration,” IEEE Transactions on Electron Devices, vol. 57, no. 7, pp. 1659-1669, July 2010.
[12] “RF MEMS switch. Omron Electronic Components LLC. Schaumburg,” [Online]. Available: http://www.components.omron.com
[13] “Advantest,” [Online]. Available: http://www.advantest.co.jp/news/press-2011/
20120319/en-index.shtml
[14] “Baolab Microsystems,” [Online]. Available: http://www.baolab.com/
[15] S. Touati, N. Lorphelin, A. Kanciurzewski, R. Robin, A. S. Rollier, O. Millet, and K. Segueni, “Low actuation voltage totally free flexible RF MEMS switch with antistiction system,” Design, Test, Integration and Packaging of MEMS/MOEMS Symp., pp.66-70, Apr. 2008.
[16] J. T. Huang, Y. K. Hsu, Y. C. Lo, K. Y. Lee, C. K. Chen, and T. C. Tsai, “Design and fabrication of low-insertion loss and high-isolation CMOS-MEMS switch for microwave applications,” Microsystems Packaging Assembly and Circuits Technology Conf., pp. 1-3, Oct. 2010.
[17] C. C. Chang, S. C. Hsieh, C. H. Chen, C. Y. Huang, C. H. Yao, and C. C. Lin, “Design of millimeter-wave MEMS-based reconfigurable front-end circuits using the standard CMOS technology,” J. Micromech. Microeng., vol. 21, no. 12, pp. 125011, 2011.
[18] G. M. Rebeiz, C. D. Patel, S. K. Han, C. H. Ko, and K. M. J. Ho, “The search for a reliable MEMS switch?” IEEE Microwave Mag., vol. 14, no. 1, pp. 57-67, Jan.-Feb. 2013.
[19] MEMS & Nanotechnology Exchange: http://www.memsnet.org/material/
[20] K. V. Caekenberghe, “Modeling RF MEMS devices,” IEEE Microwave Mag., vol. 13, no. 1, pp. 83-110, Jan.-Feb. 2012.
[21] W. C. Wong, I. A. Azid, and B. Y. Majlis, “Theoretical analysis of stiffness constant and effective mass for a round-folded beam in MEMS accelerometer,” Journal of Mechanical Engineering, vol. 57, pp. 517-525, 2011.
[22] M. Andrews, I. Harris, and G. Turner, “A comparison of squeeze-film theory with measurements on a microstructure,” Sensors and Actuators A: Physical, vol. 36, pp. 79-87, 1993.
[23] C. D. Patel, and G. M. Rebeiz, “A high power (>5 W) temperature stable RF MEMS metal-contact switch with orthogonal anchors and force-enhancing stoppers,” Dig. IEEE Int. Microwave Symp., pp. 1-4, Jun. 2011.
[24] T. Fujiwara, T. Seki, F. Sato, and M. Oba, “Development of RF-MEMS ohmic contact switch for mobile handsets applications,” Proc. European Microwave Conf., vol. 3, pp. 180-183, Oct. 2012.