研究生: |
陳佳惠 |
---|---|
論文名稱: |
斥水性奈微結構表面之液珠驅動與操控 Actuation and Manipulation of Droplets on Hydrophobic Textured Surfaces |
指導教授: | 楊鏡堂 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 奈微米結構 、斥水性 、液珠驅動 、液珠操控 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主旨在研究斥水性微結構表面對液珠靜態與動態行為之效應,並將這些新的物理現象應用於微流體系統或元件之新設計。表面粗糙度可以改變表面之親、疏水特性,影響液珠與表面之接觸特性,本文以表面微結構設計模擬表面粗糙度,研究液珠之靜態與動態行為與各種微結構設計參數之間關係,開發設計微結構表面之流體行為操控方式,作為各種微流體系統設計中流體控制之用途。
目前已開發一種新的液滴操控方式:由斥水表面之微結構分佈設計,使置於表面上的液滴內部產生壓力差,利用此壓力差驅動液滴,則可達成在不外加動力情形下進行液滴行為之操控,文中並針對此操控裝置之液珠運動行為進行相關的實驗設計與理論驗證,此設計除了具有不耗能、高生物相容性、製程簡單等優點,亦提供微流體操控領域一項嶄新的設計概念。此外還提出一種新的微型閥門設計構想:在疏水性微流道內之特定區域表面加上微結構設計,加強此區域之斥水強度而產生閥門效應。除了上述二項具體設計外,關於斥水性微結構表面設計對於液珠行為之效應,例如接觸角度、液滴懸浮行為、表面遲滯效應,文中亦有深入之探討。
Adamson, W., 1990, Physical Chemistry of Surfaces, fifth edition, Wiley-Interscience, New York, Chapter 2.
Barthlott, W. and Neinhuis, C., 1997, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta, Vol. 202, pp. 1-8.
Bico, J., Marzolin, C., and Quere, D., 1999, “Pearl Drops,” Europhysics Letters, Vol. 47, pp. 220-226.
Cassie, A. B. D. and Baxter, S., 1944, “Wettability of Porous Surfaces,” Transactions of the Faraday Society, Vol. 40, pp. 546-551.
Chen, J. H., Yang, J. T., Huang, K. J., Yu, C. S., and Hu, Y. C., 2004, “Droplet Manipulation over a Hydrophobic Surface with Roughness Patterns,” ASME Heat Transfer/Fluid Engineering Summer Conference, Charlotte, N. C., July 11-15, No. 56472.
Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J., and McCarthy, T. J., 1999, “Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples,” Langmuir, Vol. 15, pp. 3395-3399.
Cho, S. K., Moon, H., and Kim, C. J., 2003, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits,” Journal of Microelectromechanical Systems, Vol. 12, pp. 70-80.
Daniel, S., Chaudhury, M. K., and Chen, J. C., 2001, “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface,” Science, Vol. 291, pp. 633-636.
Darhuber, A. A. and Valentino, J. P., 2003, “Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays,” Journal of Microelectromechanical Systems, Vol. 12, pp. 873-879.
Extrand, C. W., 2002, “Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces,” Langmuir, Vol. 18, pp. 7991-7999.
Feng, X., Feng, L., Jin, M., Zhai, J., Jiang, L., and Zhu, D., 2004, “Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films,” Journal of the American Chemical Society, Vol. 126, pp. 62-63.
Gallardo, B. S., Gupta, V. K., Eagerton, F. D., Jong, L. I., Craig, V. S., Shah, R. R., and Abbott, N. L., 1999, “Electrochemical Principles for Active Control of Liquids on Submillimeter Scales,” Science, Vol. 283, pp. 57-60.
Grunze, M., 1999, “Surface Science: Driven Liquids,” Science, Vol. 283, pp. 41-42.
Hazlett, R. D., 1990, “Fractal Applications: Wettability and Contact Angle,” Journal of Colloid and Interface Science, Vol. 137, pp. 527-533.
He, B. and Lee, J., 2003, “Dynamic Wettability Switching by Surface Roughness Effect,” 16th IEEE International Micro Electro Mechanical Systems Conference, Kyoto, Japan, Jan., pp. 120-123.
He, B., Patankar, N. A., and Lee, J., 2003, “Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces,” Langmuir, Vol. 19, pp. 4999-5003.
Herminghaus, S., 2000, “Roughness-induced Non-wetting,” Europhysics Letters, Vol. 52, pp. 165-170.
Ichimura, K., Oh, S. K., and Nakagawa M., 2000, “Light-Driven Motion of Liquids on a Photoresponsive Surface,” Science, Vol. 288, pp. 1624-1626.
Johnson R. E. and Dettre R. H., 1963, “Contact Angle Hysteresis: Contact Angle Measurements on Rough Surfaces,” Advances in Chemistry Series, No. 43, pp. 112-144.
Kim, J. and Kim, C. J., 2002, “Nanostructured Surfaces for Dramatic Reduction of Flow Resistance in Droplet-Based Microfluidics,” 15th IEEE International Micro Electro Mechanical Systems Conference, Las Vegas, Nevada, USA, Jan., pp. 479-482.
Krupenkin, T. N., Taylor, J. A., Schneider, T. M., and Yang, S., 2004“From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces,”Langmuir, Vol. 20, pp. 3824-3827.
McMahon, T. A. and Bonner, J. T., 1983, On Size and Life, Scientific American Books, New York.
Oliver, J. F., Huh, C., and Mason, S. G., 1977, “Resistance to Spreading of Liquids by Sharp Edges,” Journal of Colloid and Interface Science, Vol. 59, pp. 568-581.
Oner, D. and McCarthy, T. J., 2000, “Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability,” Langmuir, Vol. 16, pp. 7777-7782.
Patankar, N. A., 2003, “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, Vol. 19, pp. 1249-1253.
Roura, P. and Fort, J., 2002, “Comment on “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces,” Langmuir, Vol. 18, pp. 566-569.
Seo, J., Ertekin, E., Pio, M. S., and Lee, L. P., 2002, “Self-Assembly Templates by Selective Plasma Surface Modification of Micropatterned Photoresist,” 15th IEEE International Micro Electro Mechanical Systems Conference, Las Vegas, Nevada, USA, Jan., pp. 192-195.
Shen, W., Kim, J., and Kim, C. J., 2002, “Controlling the Adhesion Force for Electrostatic Actuation of Microscale Mercury Drop by Physical Surface Modification,” 15th IEEE International Micro Electro Mechanical Systems Conference, Las Vegas, Nevada, USA, Jan., pp. 52-55.
Shibuichi, S., Onda, T., Satoh, N., and Tsujii, K., 1996, “Super Water-Repellent Surfaces Resulting from Fractal Structure,” Journal of Physical Chemistry, Vol. 100, pp. 19512-19517.
Tadanaga, K., Katata, N., and Minami, T., 1997, “Formation Process of Super-Water-Repellent Al2O3 Coating Films with High Transparency by the Sol-Gel Method,” Journal of the American Chemical Society, Vol. 80, pp. 3213-3216.
Takahashi, K., Yoshino, K., Hatano, S., and Nagayama, K., 2001, “Novel Applications of Thermally Controlled Microbubble Driving System,” 14th IEEE International Micro Electro Mechanical Systems Conference, Interlaken, Switzerland, Jan., pp. 286-289.
Thomas, Y., 1805,“An Essay on the Cohesion of Fluids,”Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 95, pp. 65-87.
Wasan, D. T., Nikolov, A. D., and Brenner, H., 2001, “Fluid Dynamics: Droplets Speeding on Surfaces,” Science, Vol. 291, pp. 605-606.
Wenzel, R. N., 1936, “Resistance of Solid Surfaces to Wetting by Water,” Industrial and Engineering Chemistry, Vol. 28, pp. 988-994.
Yasuda, T., Suzuki, K., and Shimoyama, I., 2003, “Automatic Transportation of A Droplet on A Wettability Gradient Surface,” 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, pp. 1129-1132.
Yoshimitsu, Z., Nakajima, A., Watanabe, T., and Hashimoto, K., 2002, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir, Vol. 18, pp. 5818-5822.