簡易檢索 / 詳目顯示

研究生: 何長鴻
Ho, Chang-Hong
論文名稱: 聚乳酸生質高分子韌化改質研究
Study of toughening of biomass-derived polylactide
指導教授: 李育德
Lee, Yu-Der
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 186
中文關鍵詞: 聚乳酸熱塑性聚烯烴彈性體聚二甲基矽氧烷微相分離韌化結晶動力學反應動力學
外文關鍵詞: polylactide, thermoplastic polyolefin elastomer, poly(dimethyl siloxane), microphase separation, toughening, crystallization kinetics, reaction kinetics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚乳酸(polylactide)是以玉米澱粉提煉的乳酸為單體,經過化學合成反應所得的新型生物可分解高分子材料,具有無毒、生物相容、高強度以及可生物分解及吸收等特點,是目前最具有發展前途的生物可分解高分子材料。聚乳酸具有與PET相同的優異機械物性,但是缺乏耐衝擊強度,所以其應用範圍著實受到限制。本論文著重於聚乳酸高分子的改質研究,以提升聚乳酸的耐衝擊強度與拉伸斷裂伸長量等特性。本研究主題可分為三個部分。
    第一部份是建立一種新型製備熱塑性聚烯烴彈性體接枝聚乳酸共聚合物(TPO-g-PLA copolymer)的方法:首先在熱塑性聚烯烴彈性體結構中接枝酸酐官能基(TPO-g-MAH),並在4-二甲氨基吡啶(4-dimethylaminopyridine;DMAP)的催化下完成聚乳酸高分子的接枝反應。TPO-g-PLA的結構透過紅外線光譜儀(FT-IR)以及氫核磁共振光譜儀(1H-NMR)進行鑑定。在高溫以及高觸媒濃度的反應條件下,DMAP引發聚乳酸產生降解反應;立體障礙效應的減弱將使接枝反應的活性明顯提升。此接枝型共聚合物經過證實得以有效改善聚乳酸與熱塑性聚烯烴彈性體混摻材料(PLA/TPO blend)之相容性。聚乳酸均聚合物的抗拉韌性以及斷裂伸長量特性分別為2.3±0.5 (MJ/m3) 以及6.0±0.1 (%)。加入TPO後些微增加聚乳酸的抗拉韌性以及斷裂伸長量分別達4.6±1.0 (MJ/m3) 以及15.4±1.4 (%)。當加入TPO-g-PLA共聚合物,隨著改變不同化學構造的TPO-g-PLA與其組成比例,混摻材料的斷裂伸長量變化範圍由101.7±16.5 (%)到181.9±10.1 (%),抗拉韌性則由24.7±3.8 (MJ/m3)到38.5±2.1 (MJ/m3)。關於馬來酸酐的接枝含量以及觸媒濃度對於TPO-g-PLA的相容效率以及PLA/TPO blend機械物性的影響,實驗結果顯示當觸媒濃度提升將導致混摻材料機械物性降低的現象,主要因為在低觸媒濃度條件下,TPO-g-PLA具有高分子量的PLA接枝鏈段,該側鏈聚乳酸鏈段得以與PLA主體產生深層的鏈糾纏,避免在受力的過程中自高分子的介面中剝離。最後,本研究所製備的TPO-g-PLA具有比TPO-MAH更加優異的相容效率,對於PLA/TPO blend機械物性的提升亦優於TPO-MAH。

    第二部分是選擇poly(dimethyl siloxane)(PDMS)修飾聚乳酸高分子,以提升聚乳酸的拉伸斷裂伸長量。利用末端雙醇的PDMS巨起使劑透過開環聚合反應製備出以聚乳酸為外層鏈段的三嵌段共聚合物;隨後利用diisocyanate為鏈延伸劑提升整體分子量並形成多嵌段型共聚合物(multiblock copolymer)。嵌段共聚合物以FT-IR、1H-NMR以及凝膠滲透層析(GPC)進行結構鑑定與分析。引入PDMS鏈段的聚乳酸共聚合物斷裂伸長量大幅提升到310.4%,抗拉強度與抗拉模數分別降低至1.81(MPa)與0.002(GPa)。本研究並選擇FT-IR分析isocyanate官能基隨反應時間進行的變化,探討三嵌段共聚合物化學組成對於鏈延伸反應動力學的影響。結果顯示鏈延伸反應級數在triblock copolymer的分子量由7,000(g/mol.)增加到25,000(g/mol.),反應級數由二級改變成為三級,推論是因為在分子量的提升,將因為分子鏈的聚集與糾纏使得共聚合物末端的羥基官能基無法與觸媒金屬中心形成活化錯合物,因此原本反應控制(kinetic control)的反應過程轉變為擴散控制(diffusion control),導致二級反應無法描述整體反應的進行。關於縮合反應的活性,除了與末端官能基的本質特性相關之外,分子鏈的運動性同時影響官能基間的碰撞頻率與效率;在triblock copolymer中,聚乳酸鏈段的分子量是影響反應活性的重要因素,因為當PLLA鏈段分子量增加時,分子鏈的運動性的降低將導致反應速率減緩。

    第三部分主要針對PLLA-PDMS-PLLA triblock copolymer的微相分離與結晶行為進行探討;首先利用熱示差掃瞄卡量計(DSC)以及動態機械分析儀(DMA)的分析結果確認聚乳酸-聚二甲基矽氧烷嵌段共聚合物具有微相分離的現象。PLLA-PDMS-PLLA triblock copolymer的熔融狀態結構以及經過等溫結晶後的微相分離結構透過穿透式電子顯微鏡(TEM)以及小角度X-ray光散射儀(SAXS)進行分析;改變嵌段共聚合物化學組成並提升嵌段共聚合物的排斥強度(χN)達239.5,則熔融狀態下的微相分離結構在經過等溫結晶熱處理之後得以保留。關於PDMS鏈段對於嵌段共聚合物中PLLA鏈段的結晶結構的影響,選擇FT-IR以及廣角度X-ray光散射儀(WAXS)進行分析:當聚乳酸為副組成(minor component)時,其FT-IR圖譜中可觀察1749 cm-1的吸收訊號,加上WAXS缺乏2θ = 24.5°的訊號得以證實即使在低結晶溫度條件下,PLLA的結晶結構僅以α-phase呈現,此現象主要是由於導入柔軟的PDMS鏈段將提升聚乳酸鏈段的運動性,因此即使在低結晶溫度的條件下(Tc< 90°C),高分子鏈段能夠迅速地運動與擴散,使PLLA結晶鏈段能夠排列出有序的結晶結構。嵌段共聚合物的結晶速率在導入PDMS後呈現降低的現象,而嵌段共聚合物的平衡熔點溫度隨著PLLA分子量增加而提升,因此在同樣的結晶溫度下,以低分子量PLLA組成的嵌段共聚合物將展現較低過冷程度(degree of undercooling),加上PDMS對於結晶速率的影響在PLLA鏈段提升的同時隨之降低,因此含有長聚乳酸鏈段的嵌段共聚合物具有高結晶速率。然而當聚乳酸成為副組成分散在PDMS主體時,將因為可結晶區域連續性遭到破壞,使得降低整體的結晶速率。


    Polylactide (PLA) is an environmentally friendly polymer derived from biomasses, and has been emerged as an alternative to conventional petroleum-based polymeric materials. Although PLA is a high-strength and high-modulus polymer analogous to PET, its inherent brittleness and low toughness restrict the range of applications. The main purpose of this research is to modify the mechanical properties of PLA and enhance the toughness of PLA. This thesis comprises three sections.
    In the first section, a thermoplastic polyolefin elastomer-graft- polylactide (TPO-g-PLA) was prepared by grafting polylactide onto maleic anhydride-functionalized TPO (TPO-g-MAH) in the presence of 4-dimethylaminopyridine (4-DMAP). The structures of the TPO-g-PLA copolymers were conducted by FT-IR and 1H-NMR. The effects of reaction temperature and concentration of 4-DMAP on the reactivity of graft polymerization were investigated by FT-IR, which revealed that a high reaction temperature and a high DMAP concentration are associated with dramatic depolymerization of PLA and reduction of steric hindrance effect in the graft reaction. Upon addition of the graft-type copolymers, acting as a premade compatibilizer, the compatibility of the PLA/TPO blend system was significantly improved. As the concentration of TPO-g-PLA copolymer increased, the tensile toughness and elongation at break increased with compatibilizer concentration up to 2.5 wt%, beyond which it declined. The effect of the chemical compositions of the TPO-g-PLA copolymers on the efficiency of compatibilization and mechanical properties of the PLA/TPO blends was examined by altering the number of grafting sites and concentration of 4-DMAP, suggesting that DMAP concentration dominated the properties of the ternary blend materials. Two compatibilizers, TPO-g-MAH and TPO-g-PLA, were used to compatibilize the PLA/TPO blends; the results suggested that TPO-g-PLA was more efficient in reducing the interfacial tension between the two immiscible polymers and in improving the mechanical properties of PLA/TPO blending specimens.
    In the second section, the (AB)n-type multiblock copolymers containing poly(L-lactide) (PLLA) and poly(dimethyl siloxane) (PDMS) segments were synthesized by chain extension of the hydroxyl-telechelic PLLA-PDMS-PLLA triblock copolymers, which were prepared by the ring-opening polymerization of L-lactide initiated by α,ω-functionalized hydroxyl poly(dimethyl siloxane), using 1,6-hexamethylene diisocyanate as a chain extender. The triblock and the multiblock copolymers were characterized by FT-IR, 1H-NMR and GPC. The effect of the chemical composition of the triblock copolymers, including the molecular weight and the constitutive segment chain length of the macrodiol, on the development of the Mw of the multiblock was discussed based on diffusion effect. Furthermore, the consumption of the isocyanate groups was determined by FT-IR to investigate the dependence of the reaction kinetics of the urethane formation on the chemical composition of the triblock copolymer. The results reveal that the order of the chain extension reaction depended on the Mw of the triblock copolymer: a second order reaction was transformed into a third reaction as the Mw of the triblock copolymer increased from 7000 to 25,000 (g/mol) perhaps because of the inhibition of the formation of an active complex involved in the catalyzed-urethane reaction by the polymer chain aggregation. Finally, the mechanical properties of the multiblock copolymers demonstrated that the introduction of the extremely flexible PDMS segment substantially improved the elongation at breakage, and the tensile strength and the tensile modulus declined due to the intrinsic elasticity of such segments.
    In the third section, the behaviors of microphase separation and the crystallization kinetics for triblock copolymers composed of PLLA and PDMS were characterized. From the results of thermal analysis, two glass transition temperatures which were measured by DSC showed the occurrence of phase separation phenomena in the PLLA-PDMS-PLLA triblock copolymers. And their the molten morphologies following isothermal crystallization of were characterized via small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The break-out and preservation of the nanostructure of the triblock copolymer depended on the segregation strength, which was manipulated by varying the degree of polymerization. The crystallization kinetics of these semicrystalline copolymers and the effect of isothermal crystallization on their melting behaviors were also studied using DSC, FT-IR and WAXS. The exclusive presence of α-phase PLLA crystallite was verified by identifying the absence of the WAXS diffraction signal at 2θ = 24.5° and the presence of IR absorption at 1749 cm-1 when the PLLA segment of the block copolymers was present as a minor component. The dependence of the crystallization rate (Rc) on the chemical composition of the triblock copolymers reveals that the Rc of the triblock copolymers was lower than that of PLLA homopolymer and the Rc were substantially reduced when the minor component of the crystallizable PLLA domains was dispersed in the PDMS matrix.

    中文摘要 英文摘要 謝誌 總目錄......................................I 圖目錄....................................VII 表目錄.....................................XI 第一章 序論 1 1.1. 環境友善塑膠 1 1.2. 參考文獻 5 第二章 文獻回顧 6 2.1. 生物可分解高分子 6 2.2. 合成型生物可分解高分子 9 2.2.1. 脂肪族聚酯 9 2.2.2. 芳香族聚酯 12 2.3. 生質高分子(Biopolymer) 13 2.3.1. 聚羥基烷酯 14 2.4. 聚乳酸 16 2.4.1. 單體 17 2.4.2. 製備與反應機制 18 2.4.2.1. 乳酸縮合聚合反應 19 2.4.2.2. 丙交酯開環聚合反應 21 2.4.3. 光學異構物效應 25 2.4.4. 結晶結構 26 2.5. 橡膠韌化 29 2.6. 高分子混摻 33 2.6.1. 相容性原理 34 2.6.2. 相容劑 34 2.7. 參考文獻 37 第三章 研究動機 43 第四章 聚烯烴-聚乳酸接枝共聚物合成與聚乳酸混摻韌化研究 45 4.1. 前言 45 4.1.1. 聚乳酸混摻 46 4.1.2. 聚乳酸/聚烯烴混摻系統 46 4.2. 實驗方法 49 4.2.1. 實驗藥品 49 4.2.2. 接枝型聚烯烴彈性體-聚乳酸共聚物合成 49 4.2.2.1. 聚烯烴彈性體改質反應 51 4.2.2.2. 聚乳酸接枝反應 51 4.2.3. 聚乳酸/聚烯烴彈性體混摻材料製備 52 4.2.4. 材料分析與鑑定 53 4.2.4.1. 氫核磁共振光譜 53 4.2.4.2. 紅外線光譜儀 53 4.2.4.3. 凝膠滲透層析 53 4.2.4.4. 固有黏度測試 54 4.2.4.5. 掃瞄式電子顯微鏡 54 4.2.4.6. 動態光散射儀 55 4.2.4.7. Molau測試 55 4.2.4.8. 機械強度測試 55 4.3. 結果與討論 56 4.3.1. 結構鑑定分析 56 4.3.2. 聚乳酸接枝反應性探討 60 4.3.3. 聚乳酸/聚烯烴彈性體混摻相容性 67 4.3.4. 機械物性測試 70 4.3.4.1. 共聚物濃度效應 70 4.3.4.2. 韌化機制 74 4.3.4.3. 共聚物結構效應 75 4.3.5. TPO-MAH與TPO-g-PLA相容性效率 79 4.4. 結論 81 4.5. 參考文獻 83 第五章 聚乳酸-聚二甲基矽氧烷三嵌段與多嵌段共聚合物製備與反應動力學之研究探討 89 5.1. 前言 89 5.1.1. 聚二甲基矽氧烷 89 5.1.2. 聚乳酸共聚合物 92 5.2. 實驗方法 95 5.2.1. 實驗藥品 95 5.2.2. 聚乳酸-聚二甲基矽氧烷嵌段共聚合物之製備 96 5.2.2.1. 三嵌段共聚物合成反應 98 5.2.2.2. 嵌段共聚物分子量延伸反應 98 5.2.3. 材料分析與鑑定 99 5.2.3.1. 氫核磁共振光譜 99 5.2.3.2. 紅外線光譜儀 99 5.2.3.3. 凝膠滲透層析 99 5.2.3.4. Brookfield黏度計 100 5.2.3.5. 機械強度測試 101 5.3. 結果與討論 101 5.3.1. 三嵌段共聚物合成與結構鑑定 101 5.3.2. 多嵌段共聚合物合成與鑑定 106 5.3.3. 嵌段共聚合物溶液黏度 108 5.3.4. 化學組成因素對分子量成長影響分析 109 5.3.5. 鏈成長反應動力學 111 5.3.5.1. 鏈成長反應級數 113 5.3.5.2. 鏈成長反應速率 121 5.3.6. 特性比值 123 5.3.7. 機械物性測試 125 5.4. 結論 129 5.5. 參考文獻 131 第六章 聚乳酸-聚二甲基矽氧烷嵌段共聚合物微分離之研究 137 6.1. 前言 137 6.1.1. 嵌段共聚合物 137 6.1.2. 結晶型嵌段共聚合物的相分離行為 140 6.2. 實驗方法 143 6.2.1. 實驗藥品 143 6.2.2. 聚乳酸-聚二甲基矽氧烷嵌段共聚合物合成 144 6.2.2.1. PDMS分子量成長反應 144 6.2.2.2. 聚乳酸開還聚合反應 146 6.2.3. 材料分析與鑑定 147 6.2.3.1. 氫核磁共振光譜 147 6.2.3.2. 紅外線光譜儀 148 6.2.3.3. 動態機械分析儀 148 6.2.3.4. 微差式掃描熱分析儀 148 6.2.3.5. 廣角度X-ray散射 149 6.2.3.6. 小角度X-ray散射 150 6.2.3.7. 穿透式電子顯微鏡 152 6.3. 結果與討論 151 6.3.1. 熱分析 151 6.3.2. 熔融型態 154 6.3.3. 等溫結晶效應影響微相分離結構 158 6.3.4. 嵌段共聚合物熔融行為 161 6.3.5. 嵌段共聚合物結晶速率 169 6.4. 結論 173 6.5. 參考文獻 175 第七章 結論 181 圖目錄 圖1 – 1 塑膠分解機制與流程示意圖 2 圖2 – 1 生物可分解高分子分類 8 圖2 – 2 PBS/PBSA的雙酸/雙醇單體 11 圖2 – 3 Polyesteramide化學結構 12 圖2 – 4 PHA化學結構示意圖 14 圖2 – 5 數種用於PHA合成之代表性單體 15 圖2 – 6 聚乳酸化學結構 17 圖2 – 7 丙交酯單體化學結構 18 圖2 – 8 高分子量聚乳酸合成方法 18 圖2 – 9 聚乳酸聚縮合反應平衡方程式 19 圖2 – 10 固態聚聚合反應示意圖 20 圖2 – 11 聚乳酸陰離子開環聚合反應機制 22 圖2 – 12 陽離子開環聚合反應機制 23 圖2 – 13 Lactide開環聚合反應機制 24 圖2 – 15 不同光學異構物組成的聚乳酸 25 圖2 – 16 聚乳酸α-結晶相結構 27 圖2 - 17 聚乳酸γ-結晶相結構 29 圖2 – 18 基材裂紋形成示意圖 31 圖2 – 19 橡膠韌化Epoxy resin的SEM圖 33 圖4 – 1 聚烯烴彈性體-聚乳酸接枝型共聚物合成反應方程式 50 圖4 – 2 PLA與TPO衍生共聚物的FT-IR光譜圖 57 圖4 – 3 TPO-g-PLA 共聚物的1H-NMR圖譜 59 圖4 – 4 反應觸媒濃度與聚烯烴彈性體衍生物羰基關係圖 61 圖4 – 5 反應溫度與聚烯烴彈性體衍生物羰基關係圖 61 圖4 – 6 聚乳酸反應濃度與聚烯烴彈性體衍生物羰基關係圖 62 圖4 – 7 TPO-MAH分子網狀結構示意圖 63 圖4 – 8 聚乳酸分子量與觸媒反應濃度關係圖 64 圖4 – 9 聚乳酸分子量與觸媒反應濃度關係圖 64 圖4 – 10 聚乳酸轉酯化反應機構 65 圖4 – 11 DMAP濃度對於共聚合物構造影響示意圖 66 圖4 – 12 聚乳酸/聚烯烴混摻材料溶解的乙酸乙酯溶液 67 圖4 – 13 聚乳酸/聚烯烴彈性體混摻材料破裂面SEM圖 68 圖4 - 14 TPO顆粒尺寸與TPO-g-PLA濃度關係圖 69 圖4 – 15 聚乳酸/聚烯烴彈性體混摻的應力-應變曲線圖 70 圖4 – 16 聚乳酸/聚烯烴彈性體混摻拉伸破裂面SEM圖 71 圖4 – 17 PLA/TPO/TPO-g-PLA不同區域之拉伸截面SEM照片圖 74 圖4 – 18 不同構造接枝共聚合物與介面厚度關係示意圖 77 圖4 – 19 拉伸韌性與反應條件變數關係圖 78 圖4 – 20 聚乳酸/聚烯烴混摻冷凍破裂面SEM圖 80 圖4 – 21 聚乳酸/聚烯烴混摻的TPO粒徑分佈圖 80 圖5 – 1 聚二甲基矽氧烷化學結構 89 圖5 – 2 聚矽氧烷分解反應機制 91 圖5 – 3 片段型熱塑性彈性體製備示意圖 94 圖5 – 4 聚乳酸-聚二甲基矽氧烷共聚物合成方程式 97 圖5 – 5 PLLA-PDMS-PLLA嵌段共聚物的IR圖譜 102 圖5 – 6 PLLA-PDMS-PLLA嵌段共聚合物的1H-NMR圖譜 103 圖5 – 7 PLLA-PDMS-PLLA鏈成長反應GPC圖 107 圖5 – 8 PLLA-PDMS-PLLA triblock copolymer甲苯溶液黏度 108 圖5 – 9 共聚合物化學組成與分子量關係圖 110 圖5 – 10 HMDI與triblock copolymer混合物的FT-IR圖譜 113 圖5 – 11 鏈成長反應NCO官能基轉化率與反應時間關係圖 114 圖5 – 12 鏈成長反應時間與 關係圖 116 圖5 – 13 鏈成長反應log(dα/dt)與log[(1-α)]關係圖 119 圖5 – 14 觸媒催化製備PU的反應機制 120 圖5 – 15 PLLA-PDMS-PLLA嵌段共聚物機械物性曲線 127 圖6 – 1 block copolymer組成縱斷面示意圖 138 圖6 – 2 diblock copolymer自組裝之奈米結構 139 圖6 – 3 聚乳酸-聚二甲基矽氧烷三嵌段共聚合物製備反應方程 145 圖6 – 4 聚乳酸-聚二甲基矽氧烷嵌段共聚物DSC圖 152 圖6 – 5 PLLA-PDMS-PLLA triblock copolymer的DMA圖譜 152 圖6 – 6 聚乳酸-聚二甲基矽氧烷嵌段共聚合物型態的TEM圖 155 圖6 – 7 嵌段共聚合物La60DM50La60的SAXS圖譜 156 圖6 – 8 嵌段共聚合物La70DM50La70的SAXS圖譜 156 圖6 – 9 嵌段共聚合物La220DM100La220的SAXS圖譜 157 圖6 – 10 聚乳酸-聚二甲基矽氧烷共聚合物結晶型態TEM圖 159 圖6 – 11 聚乳酸-聚二甲基矽氧烷嵌段共聚合物的熔融行為 162 圖6 – 12 嵌段共聚合物La25DM50La25不同結晶溫度的結晶結構 164 圖6 – 13 聚乳酸均聚合物的WAXS圖譜 166 圖6 – 14 聚乳酸-聚二甲基矽氧烷嵌段共聚合物Tm與Tc關係圖 168 圖6 – 15 聚乳酸均聚物與共聚物結晶速率關係圖 170 圖6 – 16 嵌段共聚合物半結晶時間與結晶溫度關係圖 171 表目錄 表2 – 1 不同酵素與其相對應之催化反應 7 表2 – 2 各種環酯(lactone)單體結構 10 表2 – 3 生物可分解芳香族聚酯高分子 13 表4 – 1 PLLA、PS與PET的基本物性 45 表4 – 2 TPO-MAH與TPO-PLA合成配方與固有黏度 58 表4 – 3 聚乳酸與聚乳酸/聚烯烴彈性體機械物性 73 表5 – 1 PLLA-PDMS-PLLA嵌段共聚合物相關數據 105 表5 – 2 鏈成長反應速率常數與反應級數 117 表5 – 3 聚乳酸-具二甲基矽氧烷嵌段共聚合物的特性比值 126 表5 – 4 聚乳酸-聚二甲基矽氧烷多嵌段共聚物機械物性 128 表6 – 1 聚乳酸-聚二甲基矽氧烷嵌段共聚合物的相關數據 153

    第一章
    1. Jayasekara R, Harding I, Bowater I, Lonergan G. J Polym Environ 2005:13(3):231-251.
    2. Krzan A, Hemjinda S, Miertus S, Corti A, Chiellini E. Polym Degrad Stabil 2006:91(12):2819-2833.
    3. Orhan Y, Buyukgungor H. Int Biodeterior Biodegrad 2000:45(1-2): 49-55.
    4. Zheng Y, Yanful EK, Bassi AS. Crit Rev Biotechnol 2005:25(4): 243-250.
    5. Kamm B, Kamm M. Appl Microbiol Biotechnol 2004:64(2):137-145.

    第二章
    1. Griffin GJL. Chemistry and Technology of Biodegradable Polymers. New York Springer 1993.
    2. Bordes P, Pollet E, Averous L. Prog Polym Sci 2009:34(2):125-155.
    3. Abraham JD, Joseph K, David M. Handbook of biodegradable polymers. Harwood Academic Publishers, 1997.
    4. Coulembier O, Degee P, Hedrick JL, Dubois P. Prog Polym Sci 2006:31(8): 723-747.
    5. Mecking S. Angew Chem-Int Edit 2004:43(9):1078-1085.
    6. Khemani KC, Carmen Scholz. Degradable polymers and materials : principles and practice. Washington, DC: American Chemical Society, 2006.
    7. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. Biotechnol Adv 2007:25(2):148-175.
    8. Rehm BHA. Biochem J 2003:376:15-33.
    9. Carothers WH, GA A. J Am Chem Soc 1929:81(11):2560-2570.
    10. Seppala JV, Helminen AO, Korhonen H. Degradable polyesters through chain linking for packaging and biomedical applications. Wiley-V C H Verlag Gmbh, 2004. p. 208-217.
    11. Kylma J, Tuominen J, Helminen A, Seppala J. Polymer 2001:42(8): 3333-3343.
    12. Tuominen J, Kylma J, Seppala J. Polymer 2002:43(1):3-10.
    13. Tuominen J, Seppala JV. Macromolecules 2000:33(10):3530-3535.
    14. Fukushima K, Hirata M, Kimura Y. Macromolecules 2007:40(9): 3049-3055.
    15. Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y. Polymer 2001:42(11):5059-5062.
    16. Fortunato B, Pilati F, Manaresi P. Polymer 1981:22(5):655-657.
    17. Younes H, Cohn D. Eur Polym J 1988:24(8):765-773.
    18. Auras R, Harte B, Selke S. Macromol Biosci 2004:4(9):835-864.
    19. Garlotta D. J Polym Environ 2001:9(2):63-84.
    20. Ikada Y, Tsuji H. Macromol Rapid Commun 2000:21(3):117-132.
    21. Kricheldorf HR, Boettcher C Makromolekulare Chemie Macromolecular Symposia 1993:73:47-64.
    22. Lemmouchi Y, Perry MC, Amass AJ, Chakraorty K, Schue F. J Polym Sci Pol Chem 2007:45(11):2235-2245.
    23. Bhaw-Luximon A, Jhurry D, Spassky N, Pensec S, Belleney Polymer 2001:42(24):9651-9656.
    24. Kricheldorf HR, Lee SR. Polymer 1995:36(15):2995-3003.
    25. Kricheldorf HR, Kreisersaunders I. Makromolekulare Chemie Macromolecular Chemistry and Physics 1990:191(5):1057-1066.
    26. Maharana T, Mohanty B, Negi YS. Prog Polym Sci 2009:34(1): 99-124.
    27. Gupta AP, Kumar V. Eur Polym J 2007:43(10):4053-4074.
    28. Tang ZH, Chen XS, Hang QZ, Bian XC, Yang LX, Piao LH, Jing XB. J Polym Sci Pol Chem 2003:41(13):1934-1941.
    29. Wang CH, Li H, Zhao X. Biomaterials 2004:25(27):5797-5801.
    30. Kricheldorf HR, Dunsing R. Makromolekulare Chemie Macromolecular Chemistry and Physics 1986:187(7):1611-1625.
    31. Kowalski A, Duda A, Penczek S. Macromolecules 2000:33(20): 7359-7370.
    32. Kricheldorf HR, Serra A. Polym Bull 1985:14(6):497-502.
    33. Stolt M, Sodergard A. Macromolecules 1999:32(20):6412-6417.
    34. Wang YB, Hillmyer MA. Macromolecules 2000:33(20):7395-7403.
    35. Chamberlain BM, Jazdzewski BA, Pink M, Hillmyer MA, Tolman WB. Macromolecules 2000:33(11):3970-3977.
    36. Amgoune A, Thomas CM, Balnois E, Grohens Y, Lutz PJ, Carpentier JF. Macromol Rapid Commun 2005:26(14):1145-1150.
    37. Platel RH, Hodgson LM, Williams CK. Polym Rev 2008:48(1):11-63.
    38. Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Chem rev 2004:104(12):6147-6176.
    39. Ikada Y, Jamshidi K, Tsuji H, Hyon SH. Macromolecules 1987:20(4): 904-906.
    40. Hirata M, Kimura Y. Polymer 2008:49(11):2656-2661.
    41. Sasaki S, Asakura T. Macromolecules 2003:36(22):8385-8390.
    42. Pan P, Kai W, Zhu B, Dong T, Inoue Y. Macromolecules 2007:40(19): 6898-6905.
    43. Zhang J, Tashiro K, Tsuji H, Domb AJ. Macromolecules 2008:41(4): 1352-1357.
    44. Yasuniwa M, Lura K, Dan Y. Polymer 2007:48(18):5398-5407.
    45. Pan P, Inoue Y. Prog Polym Sci 2009:34(7):605-640.
    46. Eling B, Gogolewski S, Pennings AJ. Polymer 1982:23(11): 1587-1593.
    47. Hoogsteen W, Postema AR, Pennings AJ, Tenbrinke G, Zugenmaier P. Macromolecules 1990:23(2):634-642.
    48. Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B. The frustrated structure of poly(L-lactide). Elsevier Sci Ltd, 2000. p. 8921-8930.
    49. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Epitaxial crystallization and crystalline polymorphism of polylactides. Elsevier Sci Ltd, 2000. p. 8909-8919.
    50. Collyer AA. Rubber toughened engineering plastics. London: Chapman & Hall, 1994.
    51. Kramer EJ. Adv Polym Sci 1983:52-3:1-56.
    52. Anderson TL. Fracture mechanics :fundamentals and applications. Taylor & Francis, 2005.
    53. Merz EH, Claver GC, Baer M. J Polym Sci 1956:22(101):325-341.
    54. Zuiderduin WCJ, Huetink J, Gaymans RJ. Polymer 2006:47(16): 5880-5887.
    55. Thio YS, Argon AS, Cohen RE. Polymer 2004:45(10):3139-3147.
    56. Zuiderduin WCJ, Westzaan C, Huetink J, Gaymans RJ. Polymer 2003:44(1):261-275.
    57. Newman S, Strella S. J Appl Polym Sci 1965:9(6):2297-&.
    58. Kinloch AJ. Proc Inst Mech Eng Aerosp Eng 1997:211(G5):307-335.
    59. Koning C, van Duin M, Pagnoulle C, Jerome R. Prog Polym Sci 1998:23(4):707-757.

    第四章
    1. Anderson KS, Schreck KM, Hillmyer MA. Polym Rev 2008:48(1): 85-108.
    2. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M. Biomacromolecules 2006:7(7):2128-2135.
    3. Perego G, Cella GD, Bastioli C. J Appl Polym Sci 1996:59(1):37-43.
    4. Bigg DM. Adv Polym Technol 2005:24(2):69-82.
    5. Shibata M, Teramoto N, Inoue Y. Polymer 2007:48(9):2768-2777.
    6. Kulinski Z, Piorkowska E. Polymer 2005:46(23):10290-10300.
    7. Martin O, Averous L. Polymer 2001:42(14):6209-6219.
    8. Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X. Polymer 2007:48(6): 1688-1694.
    9. Jiang L, Zhang JW, Wolcott MP. Polymer 2007:48(26):7632-7644.
    10. Bax B, Mussig J. Compos Sci Technol 2008:68(7-8):1601-1607.
    11. Jiang L, Wolcott MP, Zhang JW. Biomacromolecules 2006:7(1): 199-207.
    12. Liu TY, Lin WC, Yang MC, Chen SY. Polymer 2005:46(26): 12586-12594.
    13. Shibata M, Inoue Y, Miyoshi M. Polymer 2006:47(10):3557-3564.
    14. Noda I, Satkowski MM, Dowrey AE, Marcott C. Macromol Biosci 2004:4(3):269-275.
    15. Huneault MA, Li H. Polymer 2007:48(1):270-280.
    16. Li YJ, Shimizu H. Macromol Biosci 2007:7(7):921-928.
    17. Zhang W, Chen L, Zhang Y. Polymer 2009:50(5):1311-1315.
    18. Lin Y, Zhang KY, Dong ZM, Dong LS, Li YS. Macromolecules 2007:40(17):6257-6267.
    19. Bhardwaj R, Mohanty AK. Biomacromolecules 2007:8(8):2476-2484.
    20. Wang YB, Hillmyer MA. J Polym Sci Pol Chem 2001:39(16): 2755-2766.
    21. Wang YB, Hillmyer MA. Macromolecules 2000:33(20):7395-7403.
    22. Frick EM, Hillmyer MA. Macromol Rapid Commun 2000:21(18): 1317-1322.
    23. Schmidt SC, Hillmyer MA. J Polym Sci Pol Phys 2002:40(20): 2364-2376.
    24. Schmidt SC, Hillmyer MA. Macromolecules 1999:32(15):4794-4801.
    25. Wang Y, Hillmyer MA. J Polym Sci Pol Chem 2001:39(16): 2755-2766.
    26. Anderson KS, Lim SH, Hillmyer MA. J Appl Polym Sci 2003:89(14): 3757-3768.
    27. Anderson KS, Hillmyer MA. Polymer 2004:45(26):8809-8823.
    28. Qiu WL, Hirotsu T. Macromol Chem Phys 2005:206(24):2470-2482.
    29. Guerrica-Echevarria G, Eguiazabal J, Nazabal J. Eur Polym J 2007:43(3):1027-1037.
    30. Arostegui A, Nazabal J. Polymer 2003:44(1):239-249.
    31. Huneault MA, Li HB. Polymer 2007:48(1):270-280.
    32. Wei Q, Chionna D, Galoppini E. Macromol Chem Phys 2003:204(8): 1123-1133.
    33. Su ZZ, Li QY, Liu YJ, Hu GH, Wu CF. Eur Polym J 2009:45(8): 2428-2433.
    34. Huang J, Paul DR. Polymer 2006:47(10):3505-3519.
    35. Chen HB, Yang BX, Zhang HY. J Appl Polym Sci 2000:77(4): 928-933.
    36. Arostegui A, Nazabal J. Polym Advan Technol 2003:14(6):400-408.
    37. Jiang GJ, Wu H, Guo SY. J Macromol Sci 2007:46(3): 533-545.
    38. Mathew M, Thomas S. Polymer 2003:44(4):1295-1307.
    39. Yang JH, Zhang Y, Zhang YX. Polymer 2003:44(17):5047-5052.
    40. Bartczak Z, Argon AS, Cohen RE. Polymer 1999:40(9):2331-2346.
    41. Tang XW, Guo WH, Yin GR, Li BY, Wu CF. Polym Bull 2007:58(2): 479-488.
    42. Frick EM, Hillmyer MA. Macromol Rapid Commun 2000:21(18): 1317-1322.
    43. Cavicchi KA, Russell TP. Macromolecules 2007:40(4):1181-1186.
    44. Bailey TS, Rzayev J, Hillmyer MA. Macromolecules 2006:39(25): 8772-8781.
    45. Frick EM, Zalusky AS, Hillmyer MA. Biomacromolecules 2003:4(2): 216-223.
    46. Zalusky AS, Olayo-Valles R, Wolf JH, Hillmyer MA. J Am Chem Soc 2002:124(43):12761-12773.
    47. Schmidt SC, Hillmyer MA. J Polym Sci Pol Phys 2002:40(20): 2364-2376.
    48. Ho RM, Tseng WH, Fan HW, Chiang YW, Lin CC, Ko BT, Huang BH. Polymer 2005:46(22):9362-9377.
    49. Ho RM, Lin FH, Tsai CC, Lin CC, Ko BT, Hsiao BS, Sics I. Macromolecules 2004:37(16):5985-5994.
    50. Runge MB, Dutta S, Bowden NB. Macromolecules 2006:39(2): 498-508.
    51. Liu QC, Qi RR, Shen YH, Zhou CX. J Mol Struct 2007:846(1-3): 42-48.
    52. Zhang RH, Zhu YT, Zhang JG, Jiang W, Yin JH. J Polym Sci Pol Chem 2005:43(22):5529-5534.
    53. Zhu YT, An LJ, Jiang W. Macromolecules 2003:36(10):3714-3720.
    54. Shi D, Yang JH, Yao ZH, Wang Y, Huang HL, Jing W, Yin JH, Costa G. Polymer 2001:42(13):5549-5557.
    55. Zhu YT, Zhang RH, Wei JA. J Polym Sci Pol Chem 2004:42(22): 5714-5724.
    56. Zhang YC, Chen JY, Li HL. Polymer 2006:47(13):4750-4759.
    57. Zhang MZ, Dhuamel J, van Duin M, Meessen P. Macromolecules 2004:37(5):1877-1890.
    58. Mathew AK, Duhamel J, Gao J. Macromolecules 2001:34(5): 1454-1469.
    59. Xu SJ, Held I, Kempf B, Mayr H, Steglich W, Zipse H. Chem Eur J 2005:11(16):4751-4757.
    60. Nederberg F, Connor EF, Glausser T, Hedrick JL. Chem Commun 2001(20):2066-2067.
    61. Molau GE. J Polym Sci Gen Pap 1965:3(4PA):1267-&.
    62. Noolandi J, Hong KM, Bernard DA. Macromolecules 1984:17(12): 2895-2901.
    63. Kim KH, Jo WH. Polymer 2001:42(7):3205-3211.
    64. Aravind I, Albert P, Ranganathaiah C, Kurian JV, Thomas S. Polymer 2004:45(14):4925-4937.
    65. Diaz MF, Barbosa SE, Capiati NJ. Polymer 2007:48(4):1058-1065.
    66. Arostegui A, Nazabal J. Polymer 2003:44(18):5227-5237.
    67. Yu ZZ, Lei M, Ou YC, Yang GS. Polymer 2002:43(25):6993-7001.

    第五章
    1. Mark JE, Allcock HR, Robert W. Inorganic Polymers. New York: Oxford University, 2005.
    2. Gao ZM, Nahrup JS, Mark JE, Sakr A. J Appl Polym Sci 2003:90(3): 658-666.
    3. Fornasiero F, Ung M, Radke CJ, Prausnitz JM. Polymer 2005:46(13): 4845-4852.
    4. Graiver D, Farminer KW, Narayan R. J Polym Environ 2003:11(4): 129-136.
    5. Zeng JB, Li YD, Zhu QY, Yang KK, Wang XL, Wang YZ. Polymer 2009:50(5):1178-1186.
    6. Venkatraman S, Boey F, Lao LL. Prog Polym Sci 2008:33(9):853-874.
    7. Ouchi T, Ohya Y. J Polym Sci Pol Chem 2004:42(3):453-462.
    8. Frick EM, Zalusky AS, Hillmyer MA. Biomacromolecules 2003:4(2): 216-223.
    9. Wanamaker CL, O'Leary LE, Lynd NA, Hillmyer MA, Tolman WB. Biomacromolecules 2007:8(11):3634-3640.
    10. Ba CY, Yang J, Hao QH, Liu XY, Cao A. Biomacromolecules 2003:4(6):1827-1834.
    11. Zhang Z, Grijpma DW, Feijen J. Macromol Chem and Phy 2004:205(7):867-875.
    12. Ojha U, Kulkarni P, Singh J, Faust R. S. J Polym Sci Pol Chem 2009: 47(14): 3490-3505.
    13. Cohn D, Hotovely-Salomon Polymer 2005:46(7):2068-2075.
    14. Cohn D, Salomon AF. Biomaterials 2005:26(15):2297-2305.
    15. Pospiech D, Komber H, Jehnichen D, Haussler L, Eckstein K, Scheibner H, Janke A, Kricheldorf HR, Petermann O. Biomacromolecules 2005:6(1): 439-446.
    16. Andronova N, Albertsson AC. Biomacromolecules 2006:7(5):1 489-1495.
    17. Khomko E, Mashlyakovskiy L, Tonelli C. J Polym Sci Pol Chem 2004:42(21):5354-5371.
    18. Mashlyakovskiy L, Khomko E, Volynkina N, Tonelli C. J Polym Sci Pol Chem 2002:40(21):3771-3795.
    19. Han QW, Urban MW. J Appl Polym Sci 2002:86(9):2322-2329.
    20. Eceiza A, Caba Kdl, Kortaberria G, Gabilondo N, C. Marieta, Corcuera MA, Mondragon I. Eur Polym J 2005:41(12):3051-3059.
    21. Burel F, Feldman A, Bunel C. Polymer 2005:46(1):15-25.
    22. Eceiza A, de la Caba K, Gascon V, Corcuera MA, Mondragon I. Eur Polym J 2001:37(8):1685-1693.
    23. Mashlyakovskiy L, Khomko E, Zaiviy V, Tonelli C. J Polym Sci Pol Chem 2000:38(14):2579-2602.
    24. Mashlyakovskiy L, Zaiviy V, Simeone G, Tonelli C. J Polym Sci Pol Chem 1999:37(5):557-570.
    25. Parnell S, Min K. Polymer 2005:46(11):3649-3660.
    26. Barbeau P, Gerard JF, Magny B, Pascault JP. J Polym Sci Pol Phys 2000:38(21):2750-2768.
    27. d'Arlas BF, Rueda L, Stefani PM, de la Caba K, Mondragon I, Eceiza Thermochim Acta 2007:459(1-2):94-103.
    28. Tuominen J, Kylma J, Seppala J. Polymer 2002:43(1):3-10.
    29. Kylma J, Tuominen J, Helminen A, Seppala J. Polymer 2001:42(8): 3333-3343.
    30. Tuominen J, lal JVS. Macromolecules 2000:33:3530-3535.
    31. Hiltunen K, Seppala JV, Harkonen M. J Appl Polym Sci 1997:63(8): 1091-1100.
    32. Tuominen J, Seppala JV. Macromolecules 2000:33(10):3530-3535.
    33. Hiltunen K, Seppala JV, Harkonen M. J Appl Polym Sci 1997:64(5): 865-873.
    34. Zeng Q, Yang KK, Chen SC, Wang XL, Zeng JB, Wang YZ. Eur Polym J 2008:44(2):465-474.
    35. Lligadas G, Ronda JC, Galia M, Cadiz V. Biomacromolecules 2007:8(2):686-692.
    36. Haynes D, Naskar AK, Singh A, Yang CC, Burg KJ, Drews M, Harrison G, Smith DW. Macromolecules 2007:40(26):9354-9360.
    37. Seppala JV, Helminen AO, Korhonen H. Degradable polyesters through chain linking for packaging and biomedical applications. Wiley-V C H Verlag Gmbh, 2004. p. 208-217.
    38. Kebir N, Campistron L, Laguerre A, Pilard JF, Bunel C, Couvercelle JP, Gondard C. Polymer 2005:46(18):6869-6877.
    39. Draye AC, Tondeur JJ. J Mol Catal A-Chem 1999:138(2-3): 135-144.
    40. Zang YH, Carreau PJ. J Appl Polym Sci 1991:42(7):1965-1968.
    41. Gupta T, Adhikari B. J Polym Sci Pol Chem 2001:39(17):2978-2992.
    42. Grepinet B, Pla F, Hobbes P, Swaels P, Monge T J Appl Polym Sci 2000:75(5):705-712.
    43. Draye AC, Tondeur JJ. J Mol Catal A-Chem 1999:140(1):31-40.
    44. Wissman HG, Rand L, Frisch KC. J Appl Polym Sci 1964:8(6): 2971 -2978.
    45. Rauterkus VKJ, Schimmel HG, Kern W. Die Makromolekulare Chemie 1961:50(1):166-178.
    46. Rochery M, Vroman I, Lam T. J Macromol Sci-Pure Appl Chem 2000: 37(3):259-275.
    47. Stovbun EV, Badamshina ER, Greigor'eva VA, Lodygina VP, Kuzaev AI, Baturin SM. Vysokomol Soedin 1998:40(8):1286-1293.
    48. Kothandaraman H, Nasar AS. J Macromol Sci-Pure Appl Chem 1994: A31(3):339-350.
    49. Thomas R, Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, Moldenaers P, Thomas S. Polymer 2007:48(6):1695-1710.
    50. Yan LT, Guo BH, Xu J, Me XM. Polymer 2006:47(10):3696-3704.
    51. Yan LT, Guo BH, Xu J, Xie XM. J Polym Sci Pol Phys 2006: 44(19):2902-2911.
    52. Yan LT, Qian ZY, Guo BH, Xu J, Xie XM. Polymer 2005:46(25): 11918-11926.
    53. Ma Z, Gao J. J Phys Chem B 2006:110(25):12380-12383.
    54. Guzman JD, Pollard R, Schieber JD. Macromolecules 2005:38(1): 188-195.
    55. Joziasse CAP, Veenstra H, Grijpma DW, Pennings AJ. Macromol Chem Phys 1996:197(7):2219-2229.
    56. Urwin JR, Girolamo M. Makromolekulare Chemie 1972:160(OCT): 183-&.
    57. Kasparkova V, Simek L, Bohdanecky M. Macromol Chem Phys 1996: 197(11):3757-3772.
    58. Kastanek A. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1990:191(4):955-961.
    59. Turri S, Sanguineti A, Levi M. Macromol Chem Phy 1997:198(10): 3215-3228.
    60. Denkinger P, Burchard W. J Polym Sci Pol Phys 1991:29(5):589-600.
    61. Tabtiang A, Phochalam N, Venables R. J Polym Sci Pol Phys 2004: 42(6):965-973.
    62. van Aert HAM, Nelissen L, Lemstra PJ, Brunelle DJ. Polymer 2001: 42(5):1781-1788.
    63. Florez S, Munoz ME, Santamaria A. J Rheol 2005:49(1):313-325.

    第六章
    1. Ruzette AV, Leibler L. Nat Mater 2005:4(1):19-31.
    2. Khandpur AK, Forster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K. Macromolecules 1995:28(26):8796-8806.
    3. Matsen MW, Thompson RB. J Chem Phys 1999:111(15):7139-7146.
    4. Chiang YW, Ho RM, Ko BT, Lin CC. Angew Chem-Int Edit 2005:44(48):7969-7972.
    5. Breiner U, Krappe U, Abetz V, Stadler R. Macromol Chem Phys 1997:198(4):1051-1083.
    6. Huckstadt H, Gopfert A, Abetz V. Macromol Chem Phys 2000:201(3): 296-307.
    7. Park JH, Lee S, Kim JH, Park K, Kim K, Kwon IC. Prog Polym Sci 2008:33(1):113-137.
    8. Mecke A, Dittrich C, Meier W. Soft Matter 2006:2(9):751-759.
    9. Hillmyer MA. Nanoporous materials from block copolymer precursors. Berlin: Springer-Verlag Berlin, 2005. p. 137-181.
    10. Rangarajan P, Register RA, Fetters LJ. Macromolecules 1993:26(17): 4640-4645.
    11. Rangarajan P, Register RA, Adamson DH, Fetters LJ, Bras W, Naylor S, Ryan AJ. Macromolecules 1995:28(5):1422-1428.
    12. Ryan AJ, Hamley IW, Bras W, Bates FS. Macromolecules 1995:28(11): 3860-3868.
    13. Quiram DJ, Register RA, Marchand GR, Ryan AJ. Macromolecules 1997:30(26):8338-8343.
    14. Hamley IW, Fairclough JPA, Terrill NJ, Ryan AJ, Lipic PM, Bates FS, TownsAndrews E. Macromolecules 1996:29(27):8835-8843.
    15. Rangarajan P, Register RA, Fetters LJ, Bras W, Naylor S, Ryan AJ. Macromolecules 1995:28(14):4932-4938.
    16. Quiram DJ, Register RA, Marchand GR. Macromolecules 1997:30(16): 4551-4558.
    17. Ryan AJ, Fairclough JPA, Hamley IW, Mai SM, Booth C. Macromolecules 1997:30(6):1723-1727.
    18. Tzeng FY, Lin MC, Wu JY, Kuo JC, Tsai JC, Hsiao MS, Chen HL, Cheng SZD. Macromolecules 2009:42(8):3073-3085.
    19. Shiomi T, Takeshita H, Kawaguchi H, Nagai M, Takenaka K, Miya M. Macromolecules 2002:35(21):8056-8065.
    20. Ho RM, Lin FH, Tsai CC, Lin CC, Ko BT, Hsiao BS, Sics I. Macromolecules 2004:37(16):5985-5994.
    21. Castillo RV, Muller AJ, Lin MC, Chen HL, Jeng US, Hillmyer MA. Macromolecules 2008:41(16):6154-6164.
    22. Zhang FJ, Chen YZ, Huang HY, Hu ZJ, He TB. Langmuir 2003:19(14):5563-5566.
    23. Loo YL, Register RA, Ryan AJ. Macromolecules 2002:35(6): 2365-2374.
    24. Nojima S, Toei M, Hara S, Tanimoto S, Sasaki S. Polymer 2002:43(14):4087-4090.
    25. Quiram DJ, Register RA, Marchand GR, Adamson DH. Macromolecules 1998:31(15):4891-4898.
    26. Ueda M, Sakurai K, Okamoto S, Lohse DJ, MacKnight WJ, Shinkai S, Sakurai S, Nomura S. Polymer 2003:44(22):6995-7005.
    27. Muller AJ, Balsamo V, Arnal ML, Jakob T, Schmalz H, Abetz V. Macromolecules 2002:35(8):3048-3058.
    28. Floudas G, Tsitsilianis C. C Macromolecules 1997:30(15):4381-4390.
    29. Zhu L, Cheng SZD, Calhoun BH, Ge Q, Quirk RP, Thomas EL, Hsiao BS, Yeh F, Lotz B. Polymer 2001:42(13):5829-5839.
    30. Zhu L, Mimnaugh BR, Ge Q, Quirk RP, Cheng SZD, Thomas EL, Lotz B, Hsiao BS, Yeh FJ, Liu LZ. Polymer 2001:42(21):9121-9131.
    31. Xu JT, Yuan JJ, Cheng SY. Eur Polym J 2003:39(11):2091-2098.
    32. Loo YL, Register RA, Ryan AJ, Dee GT. Macromolecules 2001:34(26):8968-8977.
    33. Kricheldorf HR, Rost S, Wutz C, Domb A. Macromolecules 2005:38(16):7018-7025.
    34. Kricheldorf HR, Langanke D. Macroml Biosci 2001:1(8):364-369.
    35. Lee JK, Kim MR, Lee HJ, Chung I, Lim KT, Jeon S, Lee WK. Surface structure and stereocomplex formation of enantiomeric polylactide blends using poly(dimethyl siloxane) as a probe polymer. Wiley-V C H Verlag Gmbh. p. 91-96.
    36. Ragheb RT, Riffle JS. Polymer 2008:49(25):5397-5404.
    37. Auras R, Harte B, Selke S. Macroml Biosci 2004:4(9):835-864.
    38. Ho RM, Chung TM, Tsai JC, Kuo JC, Hsiao BS, Sics I. Macromol Rapid Commun 2005:26(2):107-111.
    39. Yilgor E, Yilgor I. Polymer 2001:42(19):7953-7959.
    40. Matsen MW, Bates FS. Macromolecules 1996:29(4):1091-1098.
    41. He Y, Fan ZY, Hu YF, Wu T, Wei J, Li SM. Eur Polym J 2007:43(10): 4431-4439.
    42. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. J Polym Sci Pol Phys 2004:42(1):25-32.
    43. Yasuniwa M, Lura K, Dan Y. Polymer 2007:48(18):5398-5407.
    44. Pan PJ, Zhu B, Kai WH, Dong T, Inoue Y. Macromolecules 2008:41(12):4296-4304.
    45. Zhang J, Tashiro K, Tsuji H, Domb AJ. Macromolecules 2008:41(4): 1352-1357.
    46. Zhang JM, Duan YX, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y. Macromolecules 2005:38(19):8012-8021.
    47. Pan P, Kai W, Zhu B, Dong T, Inoue Y. Macromolecules 2007:40(19): 6898-6905.
    48. Hoffman JD, Weeks JJ. Journal of Research of the National Bureau of Standards Section a-Physics and Chemistry 1962:66(JAN-F):13-&.
    49. Hoffman JD. Polymer 1983:24(1):3-26.
    50. Hoffman JD. Polymer 1982:23(5):656-670.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE