簡易檢索 / 詳目顯示

研究生: 潘宏裕
Hung-Yu Pan
論文名稱: 多群落下的共同種類數估計
Estimation of Shared Species Richness in Multiple Communities
指導教授: 趙蓮菊
Anne Chao
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 121
中文關鍵詞: 共同種類數區塊抽樣拉普拉斯近似法柯西-史瓦茲不等式樣本涵蓋原生物種
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通常評估生物多樣性的要素之一是「某群落或地區的物種數有多少」。而如何藉由統計方法的輔助,提供一精確的物種豐富度之估計量,以便相關研究領域的學者有更詳盡的資料來做保育決策是一個很重要的課題,而本論文的研究主題主要是探討在多群落下的共同種類數估計問題。有關單一群落的種類數估計方面,此課題是生態學的傳統問題,其相關的研究也非常的熱絡,但是關於兩群落以上共同種類數的估計方法之相關研究卻是十分的缺乏。本論文致力於此方面的研究,主要是利用拉普拉斯邊界形式近似法(Laplace’s Boundary-Mode Approximations)和柯西-史瓦茲不等式(Cauchy -Schwarz Inequality)來處理共同種類數估計問題。在適當的假設條件下,提出在多項式抽樣模式下的共同種類數估計量,和其相對應的漸近標準差估計量及相關的漸近性質。

    本文中所提及的多個群落是針對兩個群落以上(包含三、四、五個群落等等)的情形來討論;兩群落的共同種類數定義,是「在兩群落中都存在的共同種類數」,然而三個群落以上的共同種類數卻不像兩群落的共同種類數,那麼容易且有明確的定義。本文將根據不同的定義方法,將共同種類數分成狹義和廣義這兩種共同種類數來討論,所謂的狹義共同種類數是「在每一群落中均存在的共同種類數」,而廣義共同種類數是「只要在任意兩個或兩個以上之群落中存在的共同種類數」。在多群落的狹義共同種類數部分,分別用拉普拉斯近似法和柯西-史瓦茲不等式,提出此兩種不同方法的共同種類數估計量及其相關的偏差校正估計量,並理論推導出這些估計量的統計性質,也以電腦模擬的結果來比較本文中所提出的方法之優劣,有關標準差估計量方面,則是利用 -method來求得。而有關廣義共同種類數部分,則是利用集合論的方法且將狹義共同種類數代入,而求得廣義共同種類數估計量。有關標準差估計量方面,也是利用 -method來求得。

    此外亦將文中所提出的共同種類數估計量運用至美國康乃迪克大學Chazdon教授所收集的六座熱帶雨林資料與奧地利薩爾斯堡大學Foissner教授所收集的五大區域(澳洲、南美洲、非洲、歐洲、亞洲)之原生物種,做進一步的資料分析,以佐證本文所提之方法的實際應用效果。同時亦藉由一些模擬研究來瞭解本文所提出之估計方法的表現。


    致謝辭 第一章 緒論 第二章 模式與符號介紹及相關文獻回顧 § 2.1 符號與抽樣方法介紹 § 2.1.1 符號介紹 § 2.1.2 抽樣方法 § 2.2 單一群落的種類數 § 2.2.1 連續型抽樣方法 § 2.2.2 離散型抽樣方法 § 2.2.3 拉普拉斯邊界形式近似方法 § 2.3 兩個群落的共同種類數估計 § 2.3.1 兩群落符號介紹 § 2.3.2 樣本涵蓋估計方法 § 2.3.3 拉普拉斯近似方法 § 2.3.4 柯西-史瓦茲不等式方法 第三章 三個群落的共同種類數估計 § 3.1 定義共同種類數 § 3.3.1 三群落符號介紹 § 3.2 狹義共同種類數估計 § 3.3 廣義共同種類數估計 第四章 多個群落的共同種類數估計 § 4.1 k個群落的狹義共同種類數估計 § 4.4.1 k個群落符號介紹 § 4.2 四個群落狹義和廣義共同種類數估計 § 4.2.1 狹義共同種類數估計 § 4.2.2 廣義共同種類數估計 § 4.3 五個群落狹義和廣義共同種類數估計 § 4.3.1 狹義共同種類數估計 § 4.3.2 廣義共同種類數估計 第五章 模擬研究與實例分析 § 5.1 模擬研究 § 5.1.1 模擬研究符號 § 5.1.2 兩個群落之模擬研究 § 5.1.3 三個群落之模擬研究 § 5.1.4 四個群落之模擬研究 § 5.1.5 五個群落的模擬研究 § 5.2 實例分析 § 5.2.1 熱帶雨林 § 5.2.2 原生物種 第六章 結論與後續研究 參考文獻 附錄

    Ashbridge, J. and Goudie, I. B. J. (2000), “Coverage-Adjusted Estimators for Mark-Recapture in Heterogeneous Populations,” Communications in Statistics-Simulation 29, 1215-1237.

    Blyth, C. P. (1959), “Note on Estimating Information,” Annals of Mathematical Statistics 30, 71-79

    Bunge, J. and Fitzpatrick, M. (1993), “Estimating the Number of Species: A Review,” Journal of the American Statistical Association 88, 364-373.

    Burnham, K. P. and Overton, W. S. (1978), “Estimation of the Size of a Closed Population When Capture Probabilities Vary among Animals,” Biometrika 65, 625-633.

    Chao, A. (1984), “Nonparametric Estimation of the Number of Classes in a Population,” Scandinavian Journal of Statistics 11, 265-270.

    Chao, A. (1987), “Estimating the Population Size for Capture-Recapture Data with Unequal Catchability,” Biometrics 43, 783-791.

    Chao, A. (2005), “Species Estimation and Applications,” Encyclopedia of Statistical Sciences, 2nd Edition, Vol. 12, (N. Balakrishnan, C. B. Read and B. Vidakovic, eds) Wiley, New York, 7907-7916.

    Chao, A. and Bunge, J. (2002), “Estimating the Number of Species in a Stochastic Abundance Model,” Biometrics 58, 531-539.

    Chao, A., Chazdon, R. L., Colwell, R. K. and Shen, T.-J.(2005), “A New Statistical Approach for Assessing Similarity of Species Composition with Incidence and Abundance Data,” Ecology Letters 8, 148-159

    Chao, A., Chazdon, R. L., Colwell, R. K. and Shen, T.-J.(2006), “Abundance -based Similarity Indices and Their Estimation When There Are Unseen Species in Samples,” Biometrics 62, 361-371.

    Chao, A., Hwang, W.-H., Chen, Y.-C. and Kuo, C.-Y.(2000), “Estimating the Number of Shared Species in Two Communities,” Statistica Sinica 10, 227-246.

    Chao, A. and Lee, S.-M. (1992), “Estimating the Number of Classes via Sample Coverage,” Journal o the American Statistical Association 87, 210-217.

    Chao, A. and Shen, T.-J. (2003), “User’s Guide for Program SPADE (Species Prediction And Diversity Estimation),” at web site: http://chao.stat.nthu.edu.tw.

    Chao, A. and Shen, T.-J. (2004), “Non-parametric prediction in species sampling,” Journal of Agricultural, Biological and Environmental Statistics 9, 253-269.

    Chao, A., Shen, T.-J. and Hwang, W.-H.(2006), “Application of Laplace's Boundary-mode Approximations to Estimate Species and Shared Species Richness,” Australian and New Zealand Journal of Statistics 48, 117-128.

    Chao, A., Li, P. C., Agatha, S. and Foissner W. (2006), “A Statistical Approach to Estimate Soil Ciliate Diversity and Distribution Based on Data from Five Continents,” Oikos 114(3), 479-493.

    Colwell, R. K. (1994-2005), “EstimateS: Stastical Estimation of Species Richness and Shared Species from Samples,” Version 7.5. Use’s guide and application published at http://viceroy.eeb.uconn.edu/estimates.

    Colwell, R. K. and Coddington, J. A. (1994), “Estimating Terrestrial Biodiversity Through Extrapolation,” Philosophical Transactions of the Royal Society (Series B) 345, 10

    Dobson, A. P. (1996), Conservation and Biodiversity, New York: Scientific American Library.

    Erkanli, A. (1994), “Laplace Approximations for Posterior Expectations when the Mode Occurs at the Boundary of the Parameter Space,” Journal of the American Statistical Association 89, 250-258.

    Erkanli, A (1997), “Boundary-mode Approximations for Posterior Expectations,” Journal of Statistical Planning and Inference 58, 217-239.

    Fisher, R. A., Corbet, A.S. and Williams, C.B. (1943), “The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population,” Journal of Animal Ecology 12, 42-58.

    Good, I. J. (1953), “The Population Frequencies of Species and the Estimation of Population Parameters,” Biometrika 40, 237-264.

    Gower, J. C. (1985), “Measures of Similarity, Dissimilarity, and Distance,” in Encyclopedia of Statistical Science, eds. Kotz. S., New York: Wiley, 397-405.

    Grassle, J. F. and Smith W. (1976), “A Similarity Measure Sensitive to the Contribution of Rare Species and Its Use in Investigation of Variation in Marine Benthic Communities,” Oecologia 25, 13-22.

    Harris, B. (1959), “Determing Bounds on Integrals with Applications to Cataloging Problems,” Annals of Mathematical Statistics 30, 521-548.

    Jolly, G. M. (1965), “Explicit Estimates from Capture-Recapture Data with Both Death and Immigration-Stochastic Model,” Biometrika 52, 225-247.

    Jolly, G. M. (1982), “Mark-Recapture Models with Parameters Constant in Time,” Biometrics 38,301-321.

    Lee, S. M. and Chao, A. (1994), “Estimating Population Size via Sample Coverage for Closed Capture-Recapture Models,” Biometrics 50, 88-97.

    Lewontin, R. C. and Prout, T. (1956), “Estimation of the Number Different Classes in a Population,” Biometrics 12, 211-223.

    Magurran, A. E. (2004), Measuring Biological Diversity, Oxford: Blackwell.

    Owen, D. F. (1980), What is Ecology? 2/e, Oxford University Press.

    Patil, G. P. and Taillie, C. (1982), “Diversity as a Concept and Its Measurement,” Journal of the American Statistical Association 77, 548-561.

    Peet, R. K. (1974), “The Measurement of Species Diversity,” Annual Review of Ecology and Systematics 5, 285-307.

    Pielou, E. C. (1977), Mathematical Ecology, New York: Wiley.

    Sanathanan, L. (1972), “Estimating the Size of a Multinomial Population,” The Annals of Mathematical Statistics 43, 142-152.

    Sanathanan, L. (1977), “Estimating the Size of a Truncated Sample,” Journal of the American Statistical Association 72, 669-672.

    Shen, T. J., Chao, A., and Lin, C. F. (2003), “Predicting the Number of New Species in Taxonomic Sampling,” Ecology 84, 798-804.

    Solow, A. R. and Polasky, S. (1999), “A Quick Estimator for Taxonomic Surveys,” Ecology 80, 2799-2830.

    Wolda, H. (1981), “Similarity Indices, Sample Size and Diversity,” Oecologia 50, 296-302.

    Wolda, H. (1983), “Diversity, Diversity Indices and Tropical Cockroaches,” Oecologia 58, 290-298.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE