簡易檢索 / 詳目顯示

研究生: 張瑋賢
論文名稱: 以La0.58Sr0.4 CoO3為電觸媒之陰極材料在氮氣環境中行氮氧化物分解之研究
Study of La0.58Sr0.4 CoO3 as cathode material of electrocatalyst on decomposition of nitric oxide in N2 environment
指導教授: 黃大仁
口試委員: 呂世源
段興宇
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 鈣鈦礦結構電觸媒
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 交通運輸是形成氮氧化物的主要汙染來源,其中富氧燃燒引擎(lean-burn engines)雖可提高燃料的使用效率,但卻提高了氮氧化物的排放,傳統三相觸媒無法解決,勢必要發展更有效的氮氧化物處理技術。本研究分別使用的鈣鈦礦結構為La0.57Sr0.38Ag0.05Co0.95Cu0.05O3-δ(LSACC)和La0.58Sr0.4CoO3-δ(LSC),作為電觸媒管(electrocatalytic tube)和陽極支撐型鈕扣電池(anode electrolyte bilayer button cell)的陰極材料。
    本研究前面主要是測試LSACC電觸媒管材料處理氮氧化物的基本測試,觀察氮氧化物分解處理的情形。為了更加貼近真實的模擬廢氣,將系統中的氦氣換成氮氣,卻發現氮氣系統下的氮氧化物轉化率降低很多,推測為材料中添加的Cu對於N2產生強吸附,會阻礙被吸附氮氧化物中氮物種的表面擴散結合成N2離開。基於上述的原因,改以A site有缺陷的La0.58Sr0.4Co為電觸媒管陰極材料,由於文獻提到A site有缺陷的鈣鈦礦結構會增加氧空缺,想要觀察La0.58Sr0.4Co材料是否有此特性以及在氮氣系統是否可行。後來進行La0.58Sr0.4Co的觸媒測試,發現其轉化率與電觸媒管下的轉化率沒有相差太多,推測應為管型電觸媒的頂端呈圓弧型,受到流體力學的影響使陰極模擬廢氣無法與陰極觸媒反應完全。由於上述原因,改以La0.58Sr0.4Co為陽極支撐型鈕扣電池陰極材料。


    目錄 摘要 I 目錄 II 圖目錄 VI 表目錄 IX 第一章 緒論 1 第二章 文獻回顧與原理 2 2-1 氮氧化物(NOX)與引擎廢氣 2 2-2 固態氧化物燃料電池處理氮氧化物 4 2-3 電觸媒電池處理氮氧化物 7 2-4 電驅動力對氮氧化物解離影響 9 2-5 固態氧化燃料料電池的材料組成 10 2-5-1 電解質材料 10 2-5-2 陽極材料 12 2-5-3 陰極材料 13 2-5-4 鈣鈦礦型結構 15 2-6 鈣鈦礦結構A site缺陷 16 第三章 研究構想 18 第四章 實驗材料與方法 20 4-1 實驗藥品 20 4-2 製備方法 23 4-2-1製備La0.57Sr0.38Ag0.05Co0.95Cu0.05O3-δ的粉體 23 4-2-2 製備La0.57Sr0.38Ag0.05Co0.95Cu0.05O3-δ-GDC粉體 24 4-2-3 製備製備La0.57Sr0.38Ag0.05Co0.95Cu0.05O3-δ-GDC漿料 25 4-2-4 製備Ni-YSZ陽極粉體與漿料 25 4-3 實驗及分析儀器 26 4-4實驗方法 27 4-4-1管型電觸媒反應器製作 27 4-4-2 陽極支撐型電池製作 29 4-4-3 程溫脫附(Temperature Programmed Desorption,TPD) 31 4-4-4 程溫還原(Temperature Programmed Reduction,TPR) 31 4-4-5 觸媒裝置 32 4-4-6 實驗系統 33 第五章 結果與討論 34 5-1 陰極材料LSACC (La0.57Sr0.38Ag0.05Co0.95Cu0.05O3-δ)粉體之分析 34 5-2 以電化學觸媒管處理氮氧化物陰極材料為La0.57Sr0.38Ag0.05Co0.95Cu0.05O3-δ 36 5-2-1 電觸媒在不同NOX濃度下的影響 36 5-2-2 電觸媒在不同氧濃度下的影響 40 5-2-3 不同陽極氣體的NO-TPD(Temperature Programmed Decomposition) 44 5-2-4不同陽極氣體靜置下的層溫還原 49 5-2-5 氮氧化物的處理在氦氣系統與氮氣系統的差別 52 5-3 陰極材料LSC (La0.58Sr0.4CoO3-δ)粉體之分析 53 5-4以電化學觸媒管處理氮氧化物陰極材料為La0.58Sr0.4CoO3-δ 55 5-4-1 La0.57Sr0.38Ag0.05Co0.95Cu0.05和La0.58Sr0.4Co在氮氣系統氮氧化物解離比較 55 5-4-2 比較 La0.58Sr0.4CoO3-δ為電觸媒管陰極材料還原前與還原後氮氧化物處理 57 5-4-3 陰極模擬廢氣中添加CO2與不添加CO2的比較 59 5-4-4 La0.58Sr0.4CoO3-δ和La0.6Sr0.4CoO3-δ為電觸媒管陰極材料的比較 62 5-4-5 比較La0.58Sr0.4CoO3-δ為電觸媒陰極材料和觸媒的氮氧化物處理 64 5-5 以陽極支撐型電池處理氮氧化物陰極材料為La0.58Sr0.4CoO3-δ 66 5-5-1在氮氣與氦氣系統下處理氮氧化物的比較 66 5-5-2不同氧濃度在400℃和500℃下對氮氧化物處理的比較 68 5-5-3 低濃度和高濃度氮氧化物在不同溫度下對氮氧化物處理的影響 70 第六章 結論 72 第七章 參考文獻 74

    1. Roy, S., M.S. Hegde, and G. Madras, Catalysis for NOx abatement. Applied Energy, 2009. 86(11): p. 2283-2297.
    2. Kašpar, J., P. Fornasiero, and N. Hickey, Automotive catalytic converters: current status and some perspectives. Catalysis Today, 2003. 77(4): p. 419-449.
    3. Haile, S.M., Fuel cell materials and components. Acta Materialia, 2003. 51(19): p. 5981-6000.
    4. Huang, T.-J., et al., Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy & Environmental Science, 2011. 4(10): p. 4061-4067.
    5. 林育賢,以固態氧化物燃料電池去除氮氧化物之電化學提升研究,國立清華大學化工所 碩士論文,民國一百年。
    6. Huang, T.-J. and I.C. Hsiao, Nitric oxide removal from simulated lean-burn engine exhaust using a solid oxide fuel cell with V-added (LaSr)MnO3 cathode. Chemical Engineering Journal, 2010. 165(1): p. 234-239.
    7. Huang, T.-J. and C.-L. Chou, Effect of voltage and temperature on NO removal with power generation in SOFC with V2O5-added LSCF-GDC cathode. Chemical Engineering Journal, 2010. 160(1): p. 79-84.
    8. Huang, T.-J., C.-Y. Wu, and Y.-H. Lin, Electrochemical Enhancement of Nitric Oxide Removal from Simulated Lean-Burn Engine Exhaust via Solid Oxide Fuel Cells. Environmental Science & Technology, 2011. 45(13): p. 5683-5688.
    9. Huang, T.-J., S.-H. Hsu, and C.-Y. Wu, Simultaneous NOx and Hydrocarbon Emissions Control for Lean-Burn Engines Using Low-Temperature Solid Oxide Fuel Cell at Open Circuit. Environmental Science & Technology, 2012. 46(4): p. 2324-2329.
    10. Buergler, B.E., A.N. Grundy, and L.J. Gauckler, Thermodynamic Equilibrium of Single-Chamber SOFC Relevant Methane–Air Mixtures. Journal of The Electrochemical Society, 2006. 153(7): p. A1378-A1385.
    11. Molenda, J., K. Świerczek, and W. Zając, Functional materials for the IT-SOFC. Journal of Power Sources, 2007. 173(2): p. 657-670.
    12. fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 2004. 127(1–2): p. 273-283.Weber, A. and E. Ivers-Tiffée, Materials and concepts for solid oxide
    13. John B. Goodenough, Ceramic technology - Oxide-ion conductors by design, Nature , 2000. 404: p. 821-823.
    14. Mizusaki, J., et al., Preparation of nickel pattern electrodes on YSZ and their electrochemical properties in H2-H2O atmospheres. Journal of the Electrochemical Society, 1994. 141(8): p. 2129-2134.
    15. 周建良,以La0.58Sr0.4Co0.2Fe0.8O3-δ為固態氧化物燃料電池陰極材料之研究,國立清華大學化工所 博士論文,民國九十八年。
    16. Zhu, J. and A. Thomas, Perovskite-type mixed oxides as catalytic material for NO removal. Applied Catalysis B: Environmental, 2009. 92(3–4): p. 225-233.
    17. Chunwen Sun, Rob Hui, Justin Roller, Cathode materials for solid oxide fuel cells: a review, Journal of Solid State Electrochemistry , 2010.14(7): p.1125-1144.
    18. Tietz, F., et al., Performance of LSCF cathodes in cell tests. Journal of Power Sources, 2006. 156(1): p. 20-22.
    19. Kim, S., et al., Oxygen permeation, electrical conductivity and stability of the perovskite oxide La0.2Sr0.8Cu0.4Co0.6O3−x. Solid State Ionics, 1997. 104(1–2): p. 57-65.
    20. Duncan, K.L., K.-T. Lee, and E.D. Wachsman, Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel cells with mixed conducting electrolytes. Journal of Power Sources, 2011. 196(5): p. 2445-2451.
    21. Huang, T.-J., et al., NOx emission control for automotive lean-burn engines by electro-catalytic honeycomb cells. Chemical Engineering Journal, 2012. 203(0): p. 193-200.
    22. Lin, B., et al., Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2O3−δ perovskite cathode and functional graded anode. Journal of Power Sources, 2010. 195(6): p. 1624-1629.
    23. Huang, T.-J., C.-Y. Wu, and C.-C. Wu, Lean-burn NOx emission control via simulated stack of solid oxide fuel cells with Cu-added (LaSr)MnO3 cathodes. Chemical Engineering Journal, 2011. 172(2–3): p. 665-670.
    24. Huang, T.-J. and C.-L. Chou, Effect of O2 concentration on performance of solid oxide fuel cells with V2O5 or Cu added (LaSr)(CoFe)O3–(Ce,Gd)O2−x cathode with and without NO. Journal of Power Sources, 2009. 193(2): p. 580-584.
    25. Brosda, S., C.G. Vayenas, and J. Wei, Rules of chemical promotion. Applied Catalysis B: Environmental, 2006. 68(3–4): p. 109-124.
    26. Murray, E.P., T. Tsai, and S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature, 1999. 400(6745): p. 649-651.
    27. Kim, H., et al., Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells. Journal of The Electrochemical Society, 2002. 149(3): p. A247-A250.
    28. Liu, B.S. and C.T. Au, Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas. Applied Catalysis A: General, 2003. 244(1): p. 181-195.
    29. Puengjinda, P., et al., Influence of Preparation Methods on the Carbon Deposition and Reduction Behavior of Ni–ScSZ Cermet. Journal of The Electrochemical Society, 2010. 157(11): p. B1673-B1678.
    30. Zhu, J., et al., Study of La2−xSrxCuO4 catalysts for NO+CO reaction from the measurements of O2-TPD, H2-TPR and cyclic voltammetry. Journal of Molecular Catalysis A: Chemical, 2005. 238(1–2): p. 35-40.
    31. Zhu, J. and A. Thomas, Perovskite-type mixed oxides as catalytic material for NO removal. Applied Catalysis B: Environmental, 2009. 92(3–4): p. 225-233.
    32. Prasad, D.H., et al., Synthesis of nano-crystalline La1–xSrxCoO3–δ perovskite oxides by EDTA–citrate complexing process and its catalytic activity for soot oxidation. Applied Catalysis A: General, (0).
    33. Teraoka, Y., T. Harada, and S. Kagawa, Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides. Journal of the Chemical Society, Faraday Transactions, 1998. 94(13): p. 1887-1891.
    34. Huang, T.-J., C.-Y. Wu, and D.-Y. Chiang, Effect of H2O and CO2 on NOx emission control for lean-burn engines by electrochemical-catalytic cells. Journal of Industrial and Engineering Chemistry, 2013. 19(3): p. 1024-1030.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE