研究生: |
廖振宏 Jenn-Horng Liaw |
---|---|
論文名稱: |
表面黏著式永磁同步電動機之強健控制 ROBUST CONTROL OF SURFACE-MOUNTED PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVES |
指導教授: |
潘晴財
Ching-Tsai Pan |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | 表面黏著式永磁同步電動機 、弱磁控制 、最小銅損 、強健控制 、滑模速度控制器 |
外文關鍵詞: | surface-mounted permanent magnet synchronous motors, field-weakening control, minimum copper loss, robust control, slding-mode speed controller |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於具有高功率密度、高效率、高轉矩對轉動慣量比及免於維護等優點,表面黏著式永磁同步電動機已逐漸廣泛地應用於機器人、機械手臂、工具機及生產料件處理等領域。在這些應用中,快速且強健的動態響應和高效率的穩態操作常是強調的重點,因此本論文研究重點即聚焦於表面黏著式永磁同步電動機之弱磁控制策略及強健控制。基本上,本論文之主要貢獻可分述如下:首先,提出四象限操作之十個工作區分類及部份弱磁區概念,由此可以了解設計驅動器時考量定子電阻的必要性,以其對驅動器快速響應目標之達成具有關鍵性的影響。第二,針對最大可使用之轉矩生成電流分量提出一個封閉形式解,可以即時計算速度控制器之飽和邊界值。此外藉著整合此封閉形式解和傳統之比例積分速度控制器,亦可以同時達成自動弱磁控制。第三,基於提出之虛擬最大相電壓振幅,可建立一強健微調器可以在直流鏈電壓及電動機參數發生變化時維持高性能。此外,在本論文中亦提出一最小銅損控制器,可以達成全操作區域之最小銅損控制目標。特別值得一提的是,本論文亦同時提出一個不需要直流鏈電壓感測器之強健微調器,該微調器在電動車之應用可以自動考量到蓄電池端電壓變化之影響,對電動車驅動性能之保持非常有幫助。第四,提出一包含適應性觀測器的滑模速度控制器,可使驅動器充分利用最大轉矩能力獲得更佳的動態響應,同時可以降低滑模控制之切跳現象。由於以上之優點,本論文所提出之滑模速度控制器應可以作為取代現存表面黏著式永磁同步電動機驅動性之比例積分速度控制器之另一抉擇。
Due to the merits of high efficiency, high power density, high torque to inertia ratio and free from maintenance, surface-mounted permanent magnet synchronous motors (SMPMSM) have now been widely adopted for servo drives in various applications such as robotics, manipulators, machine tools and production materials handling. Fast and robust dynamic response as well as efficient steady-state operation is often emphasized on these applications. Therefore, robust field weakening control strategy is the focus of this research for SMPMSM drives. Basically, the major contributions of this dissertation can be summarized as follows. First, the classification of ten operation regions for four-quadrant operations and the partial field weakening concept are proposed. It is seen that consideration of the stator resistance is crucial to achieve the fastest response. Second, a closed form solution of the maximum available torque-producing current is proposed for calculating the corresponding saturation bounds of the speed controller in real time. By combing the closed form solution and a conventional proportional-integral (PI) speed controller, the drive can achieve both fast response and automatic field weakening control. Third, a robust tuner based on the proposed virtual maximum phase voltage amplitude together with a minimum copper loss controller based on the partial field weakening concept is proposed to achieve minimum copper loss over the entire operating range. Moreover, a dc link voltage sensorless control version is also proposed which is very useful in electrical vehicle applications. Due to the application of the robust tuner, the high performance can be preserved in spite of the variations of the dc link voltage and the parameters of the SMPMSM. Fourth, a sliding-mode speed controller with an adaptive lumped uncertainty observer is also proposed to achieve the robust control aim. A tighter estimation of the lumped uncertainty can be obtained by applying the adaptive lumped uncertainty observer to fully use the maximum torque capacity as well as to reduce the chattering phenomenon. Due to these advantages, the proposed sliding-mode speed controller may be used to replace the existing PI speed controller to achieve high performance operation for the entire operation region in the future.
[1] G.R. Slemon,“On the design of high-performance surface-mounted PM motors,”IEEE Transactions on Industry Applications, vol.30, no.1, pp.134 – 140, 1994.
[2] N. Bianchi, S. Bolognani, and P. Frare, “Design criteria of high efficiency SPM synchronous motors,” in Conf. Rec. IEEE-IEMDC, pp.1042-1048, 2003.
[3] R. Monajemy and R. Krishnan, Control in Power Electronics, Academic Press, 2002.
[4] S. Morimoto, Y. Takeda, T. Hirasa, and K. Taniguchi, “Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity,” IEEE Transactions on Industry Applications, vol.26, no. 5, pp.866 – 871, 1990.
[5] G.R. Slemon, “Achieving a constant power speed range for PM drives,” IEEE Transactions on Industry Applications, vol.31, no.2, pp.368 – 372, 1995.
[6] S. Morimoto, Y. Takeda, K. Hatanaka, Y. Tong, and T. Hirasa, “Design and control system of inverter-driven permanent magnet synchronous motors for high torque operation,” IEEE Transactions on Industry Applications, vol. 29, no.6, pp. 1150 – 1155, 1993.
[7] T. Sebastian and G. R. Slemon, “Operating limits of inverter-driven permanent magnet motor drives,” IEEE Transactions on Industry Applications, vol. 23, no. pp. 327-323, 1987.
[8] S. Morimoto, M. Sanada, and Y. Takeda, “Wind-speed operation of interior permanent magnet synchronous motors with high-performance current regulators,” IEEE Transactions on Industry Applications, vol.30, no.4, pp.920-925, 1994.
[9] S. Morimoto, Y. Takeda, and T. Hirasa, “Current phase control methods for PMSM,” IEEE Transactions on Power Electronics, vol. 30, no.2, pp.133-138, 1990.
[10] S. Morimoto, K. Hatanaka, Y. Tong, Y. Takeda, and T. Hirasa, “Servo drive system and control characteristics of salient pole permanent magnet synchronous motor,” IEEE Transactions on Industry Applications, vol. 29, no.2 , pp.338-343, 1993.
[11] A. Verl and M. Bodson, “Torque maximization for permanent magnet synchronous motors,” IEEE Transactions on Control System Technology, vol. 6, no. 6, pp. 740-745, 1998.
[12] S. D. Sudhoff, K. A. Corzine, and H. J. Hegner, “A flux-weakening strategy for current-regulated surface-mounted permanent-magnet machine drives,” IEEE Transactions on Energy Conversion, vol. 10, no. 3, pp. 431-437, 1995.
[13] J. H. Song, J. M. Kim, and S. K. Sul, “A new robust SPMSM control to parameter variations in flux weakening region,” Proc. IEEE, vol.2, pp. 1193-1198, 1996.
[14] J. J. Chen and K. P. Chin, “Minimum copper loss flux-weakening control of surface mounted permanent magnet synchronous motors,” IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 929-936, 2003.
[15] K. M. Kim and S. K. Sul, “Speed Control of Interior Permanent Magnet Synchronous Motor Drive for Flux Weakening Operation,” IEEE Transactions on Industry Applications, vol.33, no.1, pp.42-48, 1997.
[16] S. H. Kim and S. K. Sul,“ Voltage Control Strategy for Maximum Torque Operation of an Induction Machine in the Field-Weakening Region,” IEEE Transactions on Industrial Electronics, vol.44, no.4, pp.42-48, 1997.
[17] L. Harnefors, K. Pietilainen, and L. Gertmar, “Torque-Maximizing Field-Weakening Control: Design, Analysis, and Parameter Selection,” IEEE Transactions on Industrial Electronics, vol.48, no.1, pp.161-168, 2001.
[18] N. Bianchi, S. Bolognani, and M. Zigliotto, “High-performance PM synchronous motor drive for an electrical scooter,” IEEE Transactions on Power Electronics, vol.37, no.5, pp.1348-1355, 2001.
[19] L. Springob and J. Holtz, “High-bandwidth current control for torque-ripple compensation in PM synchronous machines,” IEEE Transactions on Industrial Electronics, vol. 45, no.5, pp.713-721, 1998.
[20] K. H. Kim and M. J. Youn, “A simple and robust digital current control technique of a PM synchronous motor using time delay control approach,” IEEE Transactions on Power Electronics, vol. 16, no. 1, pp.72 – 82, 2001
[21] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu, and J. M. Huang, “Robust current control for brushless DC motors,” IEE Proceedings- Electric Power Applications, vol. 147, no. 6, pp.503 – 512, 2000.
[22] M. Kadjoudj, M. E. H. Benbouzid, C. Ghennai, and D. Diallo, “A robust hybrid current control for permanent-magnet synchronous motor drive,” IEEE Transactions on Energy Conversion, vol. 19, no. 1, pp.109 – 115, 2004.
[23] K. K. Shyu and H. J. Shieh, “Variable structure current control for induction motor drives by space voltage vector PWM,” IEEE Transactions on Industrial Electronics, vol. 42, no. 6, pp. 572 – 578, 1995.
[24] K. H. Kim and M. J. Youn, “A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique,” IEEE Transactions on Industrial Electronics, vol. 49, no. 3, pp.524 – 535, 2002.
[25] W. J. Wang and C. C. Wang, “A rotor-flux-observer-based composite adaptive speed controller for an induction motor,” IEEE Transactions on Energy Conversion, vol. 12, no. 4, pp. 323 – 329, 1997.
[26] I. C. Baik, K. H. Kim, and M. J. Youn, “Robust nonlinear speed control of PM synchronous motor using adaptive and sliding mode control techniques,” IEE Proceedings- Electric Power Applications, vol.145, no.4, pp.369 – 376, 1998.
[27] F. J. Lin, K. K. Shyu, and R. J. Wai, “DSP-based minmax speed sensorless induction motor drive with sliding mode model-following speed controller,” IEE Proceedings- Electric Power Applications, vol.146, no.5, pp.471 – 478, 1999.
[28] K. K. Shyu and H. J. Shieh, “A new switching surface sliding-mode speed control for induction motor drive systems,” IEEE Transactions on Power Electronics, vol.11, no. 4, pp. 660 – 667, 1996.
[29] G. Bartolini, A. Damiano, G.Gatto, I.Marongiu, A. Pisano, and E. Usai, “Robust speed and torque estimation in electrical drives by second-order sliding modes,” IEEE Transactions on Control Systems Technology, vol. 11, no.1, pp.84 – 90, 2003
[30] P. K. Nandam and P. C. Sen, “Accessible-states-based sliding mode control of a variable speed drive system,” IEEE Transactions on Industry Applications, vol. 31, no.4, pp.737 – 743, 1995.
[31] E. Y. Y. Ho and P. C. Sen, “Control dynamics of speed drive systems using sliding mode controllers with integral compensation ,” IEEE Transactions on Industry Applications, vol. 27, no. 5, pp.883 – 892, 1991.
[32] I. C. Baik, K. H. Kim, and M. J. Youn, “Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique,” IEEE Transactions on Control Systems Technology, vol. 8, no. 1, pp.47 – 54,. 2000.
[33] K. K. Shyu, F. J. Lin, H. J. Lin, and B. S. Juang, “Robust variable structure speed control for induction motor drive,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no.1, pp.215 – 224,1999.
[34] Y. Xie, D. M. Vilathgamuwa, and K. J. Tseng, “An observer-based robust adaptive controller for permanent magnet synchronous motor drive with initial rotor angle uncertainty,” IEEE Transactions on Energy Conversion, vol. 20, no. 1, pp.115 – 120, 2005.
[35] K. K. Shyu, C. K. Lai, Y. W. Tsai, and D. I. Yang, “A newly robust controller design for the position control of permanent-magnet synchronous motor,” IEEE Transactions on Industrial Electronics, vol. 49, no. 3, pp.558 – 565, 2002.
[36] T. L. Chern, J. Chang, and G. K. Chang, “DSP-based integral variable structure model following control for brushless DC motor drivers,” IEEE Transactions on Power Electronics, vol. 12, no. 1, pp.53 – 63, 1997.
[37] K. K. Shyu, G. K. Lai, and Y. W. Tsai, “Optimal position control of synchronous reluctance motor via totally invariant variable structure control,” IEE Proceedings- Control Theory and Applications, vol. 147, no. 1, pp.28 – 36, 2000.
[38] C. K. Lai and K. K. Shyu, “A novel motor drive design for incremental motion system via sliding-mode control method,” IEEE Transactions on Industrial Electronics, vol. 52, no. 2, pp.499 – 507, 2005.
[39] F. J. Lin, K. K. Shyu, and C. H. Lin, “Incremental motion control of linear synchronous motor,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 3, pp.1011 – 1022, 2002.
[40] J. H. Lee, J. S. Ko, S. K. Chung, D. S. Lee, J. J. Lee, and M. J. Youn, “Continuous variable structure controller for BLDDSM position control with prescribed tracking performance,” IEEE Transactions on Industrial Electronics, vol. 41, no. 5, pp.483 – 491, 1994.
[41] M. W. Dunnigan, S. Wade, B. W. Williams, and X. Yu, “Position control of a vector controlled induction machine using Slotine's sliding mode control approach,” IEE Proceedings- Electric Power Applications, vol. 145, no. 3, pp.231 – 238, 1998.
[42] J. S. Ko, “Asymptotically stable adaptive load torque observer for precision position control of BLDC motor,” IEE Proceedings- Electric Power Applications, vol.145, no. 4, pp.383 – 386, 1998.
[43] M. Iwasaki and N. Matusi, “Robust speed control of IM with torque feedforward control,” IEEE Transactions on Industrial Electronics, vol. 40, no. 6, pp.553 – 560, 1993.
[44] Z. Guchuan, L. A. Dessaint, O. Akhrif, and A. Kaddouri, “Speed tracking control of a permanent-magnet synchronous motor with state and load torque observer,” IEEE Transactions on Industrial Electronics, vol. 47, no.2, pp.346 – 355, 2000.
[45] J. S. Ko, J. H. Lee, and M. J. Youn, “Robust digital position control of brushless DC motor with adaptive load torque observer,” IEE Proceedings-Electric Power Applications, vol. 141, no. 2, pp.63 – 70, 1994.
[46] K. Hong and K. Nam, “A load torque compensation scheme under the speed measurement delay,” IEEE Transactions on Industrial Electronics, vol. 45, no. 2, pp. 283 – 290, 1998.
[47] F. J. Lin and Y. S. Lin, “A robust PM synchronous motor drive with adaptive uncertainty observer,” IEEE Transactions on Energy Conversion, vol.14, no. 4, pp.989 – 995, 1999.
[48] K. Erbatur, M. O. Kaynak, and A. Sabanovic, “A study on robustness property of sliding-mode controllers: a novel design and experimental investigations,” IEEE Transactions on Industrial Electronics, vol. 46, no.5, pp.1012 – 1018, 1999.
[49] K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer's guide to sliding mode control,” IEEE Transactions on Control Systems Technology, vol. 7, no.3, pp.328 – 342, 1999.
[50] C. L. Hwang, “Sliding mode control using time-varying switching gain and boundary layer for electrohydraulic position and differential pressure control,” IEE Proceedings- Control Theory and Applications, vol. 143, no. 4, pp.325 – 332, 1996.
[51] C. Y. Su and T. P. Leung, “A sliding mode controller with bound estimation for robot manipulators,” IEEE Transactions on Robotics and Automation, vol. 9, no.2, pp.208 – 214, 1993.
[52] T. L. Chern and Y. C. Wu, “Integral variable structure control approach for robot manipulators ,” IEE Proceedings- Control Theory and Applications, vol. 139, no. 2, pp.161 - 166, 1992
[53] Y.S. Lu and J. S. Chen, “Design of a perturbation estimator using the theory of variable-structure systems and its application to magnetic levitation systems,” IEEE Transactions on Industrial Electronics, vol. 42, no. 3, pp.281 – 289, 1995.
[54] S. K. Chung, J. H. Lee, J. S. Ko, and M. J. Youn, “Robust speed control of brushless direct-drive motor using integral variable structure control,” IEE Proceedings-Electric Power Applications, vol. 142, no. 6, pp.361 – 370, 1995.
[55] Z. H. Akpolat, G. M. Asher, and J. C. Clare, “A practical approach to the design of robust speed controllers for machine drives,” IEEE Transactions on Industrial Electronics, vol. 47, no. 2, pp.315-324, 2000.
[56] A. Kawamura, H. Itoh, and K. Sakamoto, “Chattering reduction of disturbance observer based sliding mode control,” IEEE Transactions on Industry Applications, vol. 30, no.2, pp.456-461, 1994.
[57] W. J. Wang and J. Y. Chen, “A new sliding mode position controller with adaptive load torque estimator for an induction motor,” IEEE Transactions on Energy Conversion, vol.14, no. 3, pp.413-418, 1999.
[58] P. Vas, Vector Control of AC Machines, New York: Oxford University Press, 1990.
[59] H. B. Shin, “New Antiwindup PI Controller for Variable-speed Motor Drives,”
IEEE Transactions on Industrial Electronics, vol. 45, no. 3, pp.445-450, 1998.
[60] S. Morimoto, Y. Tong, Y. Takeda, and T. Hirasa, “Loss minimization control of permanent magnet synchronous motor drives,” IEEE Transactions on Industrial Electronics, vol. 41, no. 5, pp.511-517, 1994.
[61] K. S. Narendra and A. M. Annaswamy, Stable adaptive systems, Englewood Cliffs, Prentice-Hall, 1989.
[62] K. T. Kim, K. S. Kim, S. M. Hwang, T. J. Kim, and Y. H. Jung , “Comparison of magnetic forces for IPM ans SPM motor with rotor eccentricity,” IEEE Transactions on Magnetics, vol. 37, no. 5, pp.3448-3451, 2001.
[63] Y. Honda, T. Hikagi, S. Morimoto and Y. Takeda, “Rotor design optimization of a multi-layer interior permanent-magnet synchronous motor,” IEE Proceedings-Electric Power Applications, vol. 145, no.2, pp.119-124, 1998.
[64] N. Bianchi and S. Bolognani, “Parameters and volt-ampere ratings of a synchronous motor drive for flux weakening applications,” IEEE Transactions on Power Electronics, vol. 12, no.2, pp. 895-903, 1997.