簡易檢索 / 詳目顯示

研究生: 張書瑜
Chang, Shu-Yu
論文名稱: 位元失真調控之適應性取樣法在無線感測網路傳輸上的效能研究
RD Guided Adaptive Sampling for Transmission Reduction on WSNs
指導教授: 王家祥
Wang, Jia-Shung
口試委員: 曾煜棋
Tseng, Yu-Chee
曾怜玉
Tseng, Lin-Yu
林嘉文
Lin, Chia-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 60
中文關鍵詞: 無線感測網路適應性取樣率-失真降低傳輸率線性預測節能
外文關鍵詞: wireless sensor networks, adaptive sampling, rate-distortion, rate reduction, linear prediction, energy conservation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在Wireless Sensor Networks (WSNs)中,如何降低Sensor的電力消耗以達到延長使用時間是許多人想要解決的議題。一般來說Sensor在傳輸資料的時候所使用的電力是造成電力消耗的主要原因之一,然而由於Sensor計算能力的限制,我們希望能夠找到一個計算較簡單並且直觀的方法來解決這個問題。我們採取的方法分別為Adaptive Sampling With RD Model以及 Adaptive Sampling in Dynamic Mode。這兩種方法各適用於單顆Sensor資料波動小但與其它Sensor的趨勢大不相同的情況和單顆Sensor資料波動大但大部份的趨勢相似的情況。在Adaptive Sampling With RD Model中各Sensor Node會在固定的每一段時間中計算出自己目前資料波動的情況,而Base Station將會根據這個資訊將Target Distortion以最佳化的方式分配到各個Sensor Node,然後各Sensor會以查表的方式找出對應的Sampling Rate將這個區段的資料送出。而在Adaptive Sampling in Dynamic Mode中則是以送出一條代表電力走勢的線性方程式來代替Sensor所收到的資料,直到電力的走勢發生改變,使得這條方程式估計出來的值在Base Station造成的誤差超過能容忍的範圍才會再次計算出一條符合目前走勢的線性方程式。最後,我們將這兩個方法結合起來,在每次更新線性方程式時檢查前一段資料的波動情況來決定接下來將使用何種方法。由實驗結果可以看出我們的方法能夠根據不同的資料分佈情況挑選適合的模式來達到降低傳輸率的目的。


    Wireless Sensor Networks (WSNs) have been widely applied to many different areas such as surveillance, healthcare, environmental and utility monitoring, etc. In WSNs, each sensor node has the characteristics of small size, limited power, and connected wirelessly. It is responsible for gathering and delivering sensing data over the network periodically. Thus, the energy consumption problem becomes a challenging issue to prolong the lifetime of WSNs. Several research works utilize data aggregation and/or data compression concept to reduce the quantity of necessary transmission, since it is the primary issue that consumes sensors’ power particularly. However, the implementation of these operations requires high computational power.
    In this thesis, two approaches adapting to sensing data distribution to largely reduce the amount of required data transmission with limited computation are proposed. They are: Adaptive Sampling with RD Model and Adaptive Sampling in Dynamic Mode. In the first approach, the target distortion is near-optimally distributed (in the rate-distortion sense) to every sensor node corresponding to their relative fluctuation. In the latter one, the possible occurrence of rapid data change in the sensing period is concerned and deliberately manipulated. To combine these two methods, we verify the data trend of each sensor when the prediction function needs to be updated. Then according to the data trend we can decide whether to use Adaptive Sampling with RD Model or Adaptive Sampling in Dynamic Mode. Finally, several real sensed data were gathered and employed to demonstrate the performance of the proposed methods.

    致謝………………………………………………………………………………………………………………………I 中文摘要………………………………………………………………………………………………………………II Abstract…………………………………………………………………………………………………………………III Contents…………………………………………………………………………………………………………………V List of Figures………………………………………………………………………………………………………VII List of Tables…………………………………………………………………………………………………………VIII Chapter 1 Introduction……………………………………………………………………………………1 1.1 Background……………………………………………………………………………………………………1 1.2 Thesis Organization…………………………………………………………………………………………4 Chapter 2 Related Work…………………………………………………………………………………………5 2.1 Linear Forecasting Methods………………………………………………………………………………5 2.1.1 Non-seasonal Holt-Winters (NSHW) Linear Forecast………………………………………5 2.1.2 Double Exponential Smoothing (DES) Linear Forecast……………………………………6 2.1.3 Directly Smoothed Slope Based (DSS) Linear Forecast……………………………………7 2.2 Optimization Rate-Distortion Allocation……………………………………………………………8 2.3 Other Works Using Adaptive Sampling……………………………………………………………12 Chapter 3 Proposed Method…………………………………………………………………………………16 3.1 Network Architecture………………………………………………………………………………………16 3.2 Problem Formulation………………………………………………………………………………………18 3.3 System Model…………………………………………………………………………………………………20 3.4 Adaptive Sampling with RD Mode……………………………………………………………………21 3.4.1 Initialization…………………………………………………………………………………………………21 3.4.2 Linear Prediction……………………………………………………………………………………………22 3.4.3 Rate-Distortion Table Construction………………………………………………………………23 3.4.4 RD Relation Calculation…………………………………………………………………………………25 3.4.5 Optimal Rate-Distortion Allocation (ORDA)……………………………………………………26 3.4.6 Lookup table…………………………………………………………………………………………………27 3.5 Adaptive Sampling in Dynamic Mode………………………………………………………………28 3.6 Reducing Overhead…………………………………………………………………………………………29 3.6.1 Compensation Values in RD Model………………………………………………………………30 3.6.2 Slopes of Linear Prediction Function………………………………………………………………31 3.7 Combined Method……………………………………………………………………………………………33 Chapter 4 Experiment Result and Discussion…………………………………………………………36 4.1 Prediction Accuracy of NSHW and DSS……………………………………………………………36 4.2 Results of RD model…………………………………………………………………………………………38 4.3 Results of Dynamic Mode………………………………………………………………………………43 4.4 Results of Overhead Reduction………………………………………………………………49 4.5 Results of Combined Method………………………………………………………………………52 Chapter 5 Conclusion……………………………………………………………………………………………55 5.1 Conclusions and Future Work…………………………………………………………………………55 Bibliography…………………………………………………………………………………………………………58

    [1] M. Baalin, M. Rahimi, Y. Yu, S. Liu, G. Sukhatme, and W. Kaiser, "Call and response: experiments in sampling the environment," SenSys '04 Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 25 - 38, 2004.
    [2] G.Werner-Allen, P. Swieskowski, and M. Welsh, "Real-time volcanic earthquake localization," SenSys '06 Proceedings of the 4th international conference on Embedded networked sensor systems, pp. 357 - 358, Nov. 2006.
    [3] K. martinez, P. Padhy, A. Riddoch, H. Ong, and J. Hart, "Glacial Environment Monitoring using Sensor Networks," Proceedings on ACM REALWSN, June 2005.
    [4] X. Shuo, A. Dhamdhere, V. Sivaraman, and A. Burdett, "Transmission Power Control in Body Area Sensor Networks for Healthcare Monitoring," Selected Areas in Communications, IEEE Journal on, vol. 27, pp. 37-48, 2009.
    [5] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, "Wireless sensor networks for habitat monitoring," WSNA '02 Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, pp. 88 - 97, 2002.
    [6] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," Pervasive Computing, IEEE, vol. 1, pp. 59 - 69, Jan-Mar 2002.
    [7] C. Chee-Yee and S. P. Kumar, "Sensor networks: evolution, opportunities, and challenges," Proceedings of the IEEE, vol. 91, pp. 1247-1256, 2003.
    [8] I. Solis and K. Obraczka, "The impact of timing in data aggregation for sensor networks," in Communications, 2004 IEEE International Conference on, Vol.6., pp. 3640-3645 , 2004.
    [9] L. Krishnamachari, D. Estrin, and S. Wicker, "The impact of data aggregation in wireless sensor networks," in Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on, pp. 575-578 , 2002.
    [10] J. N. Al-Karaki, R. Ul-Mustafa, and A. E. Kamal, "Data aggregation in wireless sensor networks - exact and approximate algorithms," in High Performance Switching and Routing, 2004. HPSR. 2004 Workshop on, pp. 241-245 , 2004.
    [11] R. Rajagopalan, "Data-aggregation techniques in sensor networks: a survey," Communications Surveys & Tutorials, IEEE, vol. 8, pp. 48 - 63, 2006.
    [12] H. Ö. Tan and I. Körpeoǧlu, "Power efficient data gathering and aggregation in wireless sensor networks," ACM SIGMOD Record, vol. 32, pp. 66 - 71, 2003.
    [13] N. Kimura, "A survey on data compression in wireless sensor networks," presented at the Information Technology: Coding and Computing, 2005. ITCC 2005. International Conference on, 2005.
    [14] C. Yang, Z. Yang, K. Ren, and C. Liu, "Transmission reduction based on order compression of compound aggregate data over wireless sensor networks," presented at the Pervasive Computing and Applications (ICPCA), 2011 6th International Conference on, 2011.
    [15] C. Tharini, P. Vanaja Ranjan, R. Deepan, S. Selvakumar, and Syed, "Distributed data compression for energy efficiency in wireless sensor networks," presented at the Electronic Design, 2008. ICED 2008. International Conference on, 2008.
    [16] Yafee and McGee, An Introduction to Time Series Analysis and Forecasting: Elsevier, 2000.
    [17] L. Jai-Jin and K. G. Shin, "Energy-efficient self-adapting online linear forecasting for wireless sensor network applications," in Mobile Adhoc and Sensor Systems Conference, 2005. IEEE International Conference on, pp. 8 pp.-379, 2005.
    [18] H. M. Paul Zarchan, Fundamentals of Kalman Filtering: A Practical Approach: American Institute of Aeronautics and Astronautics, 2000.
    [19] C. Chatfield and M. Yar, "Holt-Winters Forecasting: Some Practical Issues," Journal of the Royal Statistical Society. Series D (The Statistician), vol. 37, pp. 129-140, 1988.
    [20] J. D. Brutlag, "Aberrant Behavior Detection in Time Series for Network Monitoring," Proceedings of the 14th USENIX Systems Administration Conference (LISA), pp. 139 - 146, 2000.
    [21] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, "Sketch-based change detection: methods, evaluation, and applications," IMC '03 Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, pp. 234 - 247, 2003.
    [22] D. C. Montgomery, L. A. Johnson, and J. S. Gardiner, Forecasting and Time Series Analysis: McGraw-Hill Book Company, 1990.
    [23] P. J. Broackwell and R. A. Davis, Introduction to Time Series and Forecasting: Springer, 1996.
    [24] S. Mallat and F. Falzon, "Analysis of low bit rate image transform coding," Signal Processing, IEEE Transactions on, vol. 46, pp. 1027-1042, 1998.
    [25] L. Chun-Lung, C. Chen-Lung, and W. Jia-Shung, "Optimization of Rate Allocation with Distortion Guarantee in Sensor Networks," Parallel and Distributed Systems, IEEE Transactions on, vol. 22, pp. 1230-1237, 2011.
    [26] B. Gedik, L. Ling, and P. S. Yu, "ASAP: An Adaptive Sampling Approach to Data Collection in Sensor Networks," Parallel and Distributed Systems, IEEE Transactions on, vol. 18, pp. 1766-1783, 2007.
    [27] H. Minglei and H. Yu Hen, "Collaborative Sampling in Wireless Sensor Networks," in Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pp. 1-5 , 2010.
    [28] A. Masoum, N. Meratnia, Z. Taghikhaki, and P. J. M. Havinga, "Reward and punishment based cooperative adaptive sampling in wireless sensor networks," presented at the Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2010 Sixth International Conference on, 2010

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE