簡易檢索 / 詳目顯示

研究生: 王俐文
Li-Wen Wang
論文名稱: 具快速暫態反應之嵌入式可變輸出穩壓器
Integrated Low Dropout Regulator with Fast Transient and Dynamic Output
指導教授: 黃柏鈞
Po-Chiun Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 66
中文關鍵詞: 低壓降線性穩壓器動態輸出
外文關鍵詞: Low dropout, Linear regulator, Dynamic output
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於攜帶式的電子產品持續發展,sysetm-on-chip (SoC) 一直是發展的重點之一。然而在這樣的應用下,如何去整合不同元件和個別所需要的電源系統(Power IC)在同一顆晶片上,便是一大挑戰,所以我們期待能設計一個穩壓器,它能具備快速動態輸出的功能,和有效地電源管理,使整體運作能達到最佳化。

    在傳統穩壓器中,由於迴圈的特性會隨著負載不同而有所變化,為了確保不同負載下的穩定度,頻寬必定會遭受到限制,導致暫態方面的特性隨之受限。因此我們期望能克服傳統架構上會遇到的瓶頸,使得穩壓器能達到高頻寬的特性,同時實現好的暫態響應。此論文將著重在設計一個整合性的穩壓器,並具備及時動態追蹤的特性,甚至可以在需要的時候進入待命狀態。

    這次的研究將會利用replica bias的概念來做為基礎。藉著兩種迴圈的設計,使追蹤參考電壓的迴圈不受到負載的不同而有所變化,避免頻寬遭受限制,達到快速追蹤參考電壓的目的,同時提供另一迴圈一個穩定的偏壓值,此迴圈負責的是追蹤負載電流的情形,迅速的控制Power MOS提供的電流源,以維持輸出電壓的穩定狀態,藉由這樣的機制,以實現穩定的AC特性和快速的暫態響應之目的。我們期望它能夠快速的動態提供負載所需求的電壓值,且可以快速在主動模式和待命模式間做切換,使後端系統運作能有效地運作。此整合性穩壓器採用TSMC 0.18um製程來實現,可提供1.2V~1.5V輸出,具備120mV低壓降的特性,且如預期地完成快速動態輸出的功能。除此之外,此架構同時也可實現在0.13um製程上,可動態的提供0.9~1.2V輸出,提供負載系統不同的需求。


    To guarantee the loop stability, the bandwidth of the conventional linear regulator is limited since the load current is not fixed. We expect to overcome the bottleneck so that the regulator can process high bandwidth and good transient response at the same time. The research demonstrates that an integrated LDO linear regulator with fast dynamic output. The design is suitable for SoC applications because it can help the integration of elements and their power devices and the optimization
    of system operation.

    The regulator design employs a replica-biased feature. By using two loops, we achieved a regulator with good AC response and fast transient response. It can provide multiple output voltages for different requirements of loads, and can be switched fast between active mode and suspend mode. The regulator was fabricated in a 0.18 μm CMOS technology with output voltages from 1.2V to 1.5V and a 120mV dropout voltage.

    1 Introduction 1 1.1 Integrated power management for SoC . . . . . . 1 1.2 Thesis Organization . . . . . . . . . . . . . . 3 2 Fundamental of Low Dropout Regulator 4 2.1 Operation of Linear Regulator . . . . . . . . . 4 2.2 Specifications . . . . . . . . . . . . . . . . .5 2.3 The Categories of Linear Regulator . . . . . . 12 2.4 Frequency Response for a Typical LDO Linear Regulator . . . . . . . . . . . . . . 13 2.5 Integrated LDO Linear Regulator . . . . . . . 15 2.5.1 Frequency Response . . . . . . . . . . . . . 15 2.5.2 Transient Response . . . . . . . . . . . . . 16 3 Design of Dynamic Output LDO Linear Regulator 18 3.1 Introduction . . . . . . . . . . . . . . . . . 18 3.2 System Analysis . . . . . . . . . . . . . . . 21 3.2.1 Load Regulation . . . . . . . . . . . . . . 22 3.2.2 Line Regulation . . . . . . . . . . . . . . 24 3.2.3 Bias-Setup Loop . . . . . . . . . . . . . . 27 3.3 Circuit Implementation . . . . . . . . . . . . 30 3.3.1 Output Stage with Local Loop . . . . . . . . 30 3.3.2 Bias-Setup Loop . . . . . . . . . .. . . . . 31 3.3.3 Biasing Circuit . .. . . . . . . . . . . . . 33 3.3.4 Power Management Function . . . . . . . . . 35 4 Dynamic Output LDO Linear Regulator Implementation 36 4.1 System Introduction . . . . . . . . . . . . .. 36 4.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . 38 4.2.1 Regulation Performance . . . . . . . . . . . 38 4.2.2 Dynamic Characteristic . . . . . . . . . . . 40 4.3 Measurement Result . . . . . . . . . . . . . . 44 4.3.1 DC Characteristic . . . . . . . . . . . . . 45 4.3.2 Transient Response . . . . . . . . . . . . . 46 4.4 Performance Summary . . . . . .. . . . . . . . 49 5 LDO Linear Regulator Design Using a 0.13μm CMOS Technology 51 5.1 Introduction . . . . . . . . . . . . . . . . . 51 5.2 Simulation Result . . . . . .. . . . . . . . . 52 5.2.1 Steady-State Parameters . . . . . . . . . . 52 5.2.2 Dynamic Characteristic . . . . . . . . . . . 55 5.2.3 Analysis of Tradeoff for Transient Response . 60 6 Conclusion and FutureWork 65 6.1 Conclusion . . . . . . . . . . . . . . . . . . 65 6.2 Future Work . . . . . . . . . . . . . . . . . 66

    [1] F. Lima, A. Geraldes, T. Marques, J. N. Ramalho, and P. Casimiro, “Embedded CMOS distributed
    voltage regulator for large core loads,” IEEE ESCIRC, pp. 521–523, Sept. 2003.
    [2] G. W. den Besten and B. Nauta, “Embedded 5 V-to-3.3 V voltage regulator for supplying
    digital IC’sin 3.3 V CMOS technology,” IEEE J. Solid-State Circuits, vol. 33, pp. 956–962,
    July 1998.
    [3] P. Hazucha, T. Karnik, B. A. Bloechel, C. Parsons, D. Finan, and S. Borkar, “Area-efficient
    linear regulator with ultra-fast load regulation,” IEEE J. Solid-State Circuits, vol. 40, pp. 933–
    940, Apr. 2005.
    [4] G. Patounakis, Y. W. Li, and K. L. Shepard, “A fully integrated on-chip DC-DC conversion
    and power management system,” IEEE J. Solid-State Circuits, vol. 39, pp. 443–451, Mar.
    2004.
    [5] T. Endoh, K. Sunaga, H. Sakuraba, and F. Masuoka, “An on-chip 96.5% current efficiency
    CMOS linear regulator using aflexible control technique of output current,” IEEE J. Solid-
    State Circuits, vol. 36, pp. 34–39, Jan. 2001.
    [6] T. Kugelstadt, “Fundamental Theory of PMOS Low-Dropout Linear Regulators,” Application
    Report, Texas Instruments Inc., literature number SLVA068.
    [7] B. M. King, “Understanding the Terms and Definitions of LDO Voltage Regulators,” Application
    Report, Texas Instruments Inc., literature number SLVA079.
    [8] B. S. Lee, “Technical Review of Low Dropout Voltage Regulator Operation and Performance,”
    Application Report, Texas Instruments Inc., literature number SLVA072.
    [9] G. A. Rincon-Mora and P. E. Allen, “Optimized frequency-shapping circuit topologies for
    LDO’s,” IEEE Trans. Circuits Syst. II, vol. 45, pp. 703–708, June 1998.
    [10] K. C. Kwok and P. K. T. Mok, “Pole-zero tracking frequency compensation for low dropout
    regulator,” IEEE International Symposium on Circuits and Systems, vol. 4, pp. 735–738, May
    2002.
    [11] S. Rajapandian, K. Shepard, P. Hazucha, and T. Karnik, “High-tension power delivery: operating
    0.18μm CMOS digital logic at 5.4 V,” IEEE Int. Solid-State Circuits Conf. Digest of
    Technical Papers (ISSCC), pp. 298–300, 2005.
    [12] B. Razavi, Design of Analog Integrated Circuits. McGraw-Hill, 1994.
    [13] S. Lau, P. Mok, and K. Leung, “A Low-Dropout Regulator for SoCWith Q-Reduction,” IEEE
    J. Solid-State Circuits, vol. 42, no. 3, pp. 658–664, 2007.
    [14] R. Milliken, J. Silva-Mart´ınez, and E. S´anchez-Sinencio, “Full On-Chip CMOS Low-Dropout
    Voltage Regulator,” IEEE Trans. Circuits Syst. I, vol. 54, no. 9, pp. 1879–1890, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE