簡易檢索 / 詳目顯示

研究生: 邱揚彬
Chiou, Loky Yang-Bin
論文名稱: Enhancement of Light Emission using Nanometer Silver Islands in Organic Light Emitting Diodes
藉由奈米銀島層增強有機發光二極體出光效率
指導教授: 劉容生
Liu, Yung-Sheng
洪毓玨
Hung, Yu-Chueh
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 79
中文關鍵詞: 有機發光二極體(OLED)下發光型有機發光二極體 (BOLED)表面電漿共振(SPR)局部表面電漿共振 (LSPR)微共振腔效應表面處理
外文關鍵詞: OLED, bottom emitting OLED, Surface Plasmon Resonance, Localized Surface Plasmon Resonance, Micro Cavity Effect, Surface Treatment and Modification
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The efficiency enhancement based on a blue organic light emitting device is reported in this study using nanometer silver islands (NSIs) thermally deposited in a high vacuum onto an indium tin oxide (ITO) contacted OLED system. The Atomic Force Microscopy (AFM) and Scanning Electron Microscope (SEM) images show the sizes of NSIs are 3–30 nm in diameter with spherical shapes randomly distributed on the ITO surface.

    The experimental results show that the insertion of proper nanometer silver islands (NSIs) can effectively enhance the luminance efficiency of blue organic light emitting diodes (OLEDs) . Compared with the conventional OLED structure (Referred as Blue I), the samples with NSIs (Blue II) shows 40±3% output intensity enhancement at an injection current of 400 mA/cm2. The enhancement, however, was not observed for a green OLED under the similar experimental condition. The presence of nanometer silver islands (NSIs) apparently plays a crucial role in enhancing the emission properties of the blue organic light emitting devices. The enhancement mechanism by surface plasmon is suggested and discussed.


    本論文在探討有效提升有機發光二極體(OLED)發光效率方法,
    在高真空下利用熱蒸鍍將奈米銀島層(nanometer silver islands, NSIs)沉積於ITO導電玻璃基板之上,透過原子力顯微鏡(Atomic Force Microscopy, AFM)及掃描式電子顯微鏡(Scanning Electron Microscope, SEM)可觀察到在ITO基板上之奈米銀島層外型大小約3∼30 nm分布在表面之上。

    本研究發現藉由添加適合的奈米銀島層可以有效的提升藍光有機發光二極體之發光效率,與傳統藍光有機發光二極體(Blue I)比較,添加奈米銀島層之藍光有機發光二極體(Blue II),在注入電流在400 mA/cm2時有40±3% 之輸出強度效率改善。由此可見,奈米銀島層在藍光有機發光二極體之效率改善上扮演著重要之角色。藉由表面電漿共振效應進而提升藍光效率之原因在本論文提出與討論。

    ABSTRACT (in English) i ABSTRACT (in Chinese) ii ACKNOWLEDGEMENTS (in Engish) iii ACKNOWLEDGEMENTS (in Chinese) iv TABLE OF CONTENTS v LIST OF FIGURES vii LIST OF TABLES ix CHAPTER 1: INTRODUCTION 1 1.1 Background 1 1.2 Motivation 3 1.3 Thesis Overview 4 CHAPTER 2: ORGANIC ELECTROLUMINESCENCE DEVICES AND MECHANISMS FOR EMISSION ENHANCEMENT 6 2.1 Organic Electroluminescence 6 2.1.1 Organic LED Device Structure 7 2.1.2 Organic LED Operation Theory 10 2.2 Surface Plasmon 14 2.2.1 Historical Milestones in Surface Plasmon 15 2.2.2 Surface Plasmon Resonance 16 2.2.2.1 The Dispersion Relation of Surface Plasmon 21 2.2.2.2 Penetration Depths of Surface Plasmon 21 2.2.3 Localized Surface Plasmons 22 2.2.3.1 Spherical Particles Plasmon 23 2.3 Micro Cavity Effect 25 2.4 Surface Treatment and Modification 26 CHAPTER 3: EXPERIMENTAL 29 3.1 Device Structures 29 3.1.1 Blue Organic LED 31 3.1.2 Green Organic LED 32 3.2 Materials 34 3.3 Anode Patterning and Etching 38 3.4 The Treatment of Substrate 39 3.5 Thermal Vacuum Evaporation System 40 3.6 Fabrication of Organic LEDs 45 3.7 Measurements 46 3.7.1 Efficiency Calculation 46 3.7.2 Electrical and Optical Behavior 48 3.7.3 Optical Extinction Spectra 48 3.7.4 Electroluminescence Spectra 49 CHAPTER 4: RESULTS AND DISCUSSION 50 4.1 Morphology of Nanometer Silver Islands 50 4.1.1 Scanning Electron Microscope (SEM) Images 50 4.1.2 Atomic Force Microscopy (AFM) Images 53 4.2 Optical Extinction Spectra of Silver 56 4.2.1 Absorption Spectra of Ag on Bare Glass 56 4.2.2 Absorption Spectra of Ag on ITO-coated Glass 58 4.2.3 Absorption Spectra of ITO-coated Glass under Different Annealing Times 59 4.3 Electroluminescence of Organic LED 60 4.3.1 The Relationship between OLED and Nanometer Silver Islands 64 4.3.2 Emission Enhancement of Organic LED 65 CHAPTER 5: CONCLUSION 75 REFERENCE 76

    [1] A. Misra, P. Kumar, M.N. Kamalasanan, and S. Chandra, Semicond. Sci. Technol. 21, R35 (2006).
    [2] The DisplaySearch, Quarterly OLED Shipment and Forecast Report, 2009
    [3] The DisplaySearch, OLED Lighting in 2009 and Beyond: The Bright Future, 2009
    [4] The DisplaySearch, OLED Characterization Report: Sony XEL-1, 2008
    [5] M. Pope, H. Kallman, P. Magnante. J. Chem. Phys., 38, 2042-2043 (1963).
    [6] W. Helfrich, W.G. Schneider. Phys. Rev. Lett., 14, 229-231 (1965).
    [7] C. W. Tang and S. A. VanSlyke," Appl. Phys. Lett., 51, 913 (1987).
    [8] J. H. Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539-541 (1990).
    [9] J. Kim, M. Granstrom, R. Friend, N. Johansson, W. Salaneck, R. Daik, and W. Feast, J. Appl. Phys., 84, 6859 (1998).
    [10] M. Klessinger, J. Michl, "Excited states and Photochemistry of Organic Molecules," VCH Publishers, New York (1995).
    [11] Sambles J. R., Bradbery G.W., Fuzi Yang, Contem. Phy., 32, 3, 173-183 (1991).
    [12] R. W.Wood, Proceedings of the Physical Society of London, 18, 269-275 (1902).
    [13] Fano, U.,Phys. Rev. 50, 573 (1936).
    [14] Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films, Phys. Rev.106, 874 (1957).
    [15] Raether, H. (1988) Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag; Berlin.
    [16] Ferrell, R. A., Predicted Radiation of Plasma Oscillations in Metal Films, Phys. Rev. 111, 1214 (1958).
    [17] Powell, C. J., Swan, J. B., Phys. Rev., 118, 640 (1960).
    [18] Otto, A., Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Phys., 216, 398 (1968).
    [19] Kretschmann, E., Raether, H. Z. Naturforsch., 23a, 2135 (1968).
    [20] McDonnell, J. M., Curr. Opin. Chem. Biol., 5, 572-577 (2001).
    [21] C. Haynes, and R. P. Van Duyne, J. Phys. Chem., B 107, 7426 (2003).
    [22] D. L. Jeanmaire, and R. P. Van Duyne, J. Electroanal. Chem., 84 (1977).
    [23] A. Wokaun, Molec. Phys., 56, 1 (1985).
    [24] M. Moskovits, J. Chem. Phys., 69, 4159 (1978).
    [25] J. C. Tsang, J. R. Kirtley, and T. N. Theis, Sol. State Common., 35, 667 (1980).
    [26] R. G. Freeman, K . C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, M. J. Natan, Science, 267, 1629 (1995).
    [27] C. Jung, S. Yee, and K. Kuhn, J. Lightwave Tech., 12, 10, 1802-1806 (1994).
    [28] N. A. Janunts and Kh. V. Nerkararyan, Appl. Phys. Lett., 79, 3, 299-301, (2001).
    [39] J. S. Schildkraut, Appl. Opt., 27, 21, 4587-4590 (1988).
    [30] K. Welford, Optical and Quantum Electronics, 23, 1-27 (1991).
    [31] J. Tominaga et al., Appl. Phys. Lett., 78, 2417-2419 (2001).
    [32] J. Johnstone, G. Stewart, T. Hart, and B. Culshaw, J. Lightwave Tech., 8, 4, 538-543, (1990).
    [33] A. Tredicucci et al., Appl. Phys. Lett., 76, 2164-2166 (2000).
    [34] D. J. Bergman and M. I. Stockman, Laser Physics, 14, 3, 409-411 (2004).
    [35] J. Lambe and S. L. McCarthy, Phys. Rev. Lett., 37, 14, (1976).
    [36] Alastair Paul Hibbins, Grating Coupling of Surface Plasmon Polartions at Visible and Microwave Frequencies, PhD thesis, University of Exeter, 1999.
    [37] R. F. Wallis and G. I. Stegeman, Electromagnetic Surface Excitations, Springer-Verlag: Berlin, 2-7, 1985.
    [38] J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B, 54, 3-15 (1999).
    [39] U. Kreibig and M. Vollmer. Optical Properties of Metal Clusters. Springer Series in Materials Science, University of California, Berkeley, 1 edition, 1995.
    [40] S. Underwood, P. Mulvaney, Langmuir, 10, 3427 (1994).
    [41] E. Hutter and J.H. Fendler, Adv. Mater., 16, 1685-1706 (2004).
    [42] C. F. Bohren and D. R. Human. Absorbtion and Scattering of Light by Small Particles. Wiley & Sons, Inc., Pennsylvania State University, 2 edition, 1998.
    [43] U. Kreibig and M. Vollmer. Optical Properties of Metal Clusters. Springer Series in Materials Science, University of California, Berkeley, 1 edition, 1995.
    [44] R. E. Slusher and C. Weisbuch, Solid State Commun., 92, 149 (1994).
    [45] Slusher, and J. M. Phillips, J. Appl. Phys., 80, 6954 (1996).
    [46] R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, Appl. Phys. Lett., 69, 1997 (1996).
    [47] C. L. Lin, H. W. Lin, C. C. Wu, Appl. Phys. Lett., 87, 021101 (2005).
    [48] S. F. Hsu, C. C. Lee, S. W. Hwang, and C. H. Chen, Appl. Phys. Lett. , 86, 253508, (2005).
    [49] S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68, 447-450 (1999).
    [50] K. Sugiyama, H. Ishii, Y. Ouchi, K. Seki, J. Appl. Phys., 87, 295-298 (2000).
    [51] C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, Appl. Phys. Lett. , 83, 5127 (2003).
    [52] C. C. Wu, C. I. Wu, J. C. Sturn, A. Kahn, Appl. Phys. Lett.,70, 348, (1997).
    [53] H. W. Choi, S. Y. Kim, K. -B. Kim, Y. -H. Tak, and J. -L. Lee, Appl. Phys. Lett., 86, 012104 (2005).
    [54] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys., 86, 1688-1692 (1999).
    [55] D. R. Lide, CRC Handbook of Chemistry and Physics, 83rd ed. (CRC Press, Boca Raton, FL, 2002).
    [56] Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, Chem. Phys. Lett., 386, 128 (2004).
    [57] G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, Appl. Surf. Sci., 183, 191 (2001).
    [58] Xiao Buwen, Shang Yafeng, Meng Meng and Li Chuannan, Microelectronics Journal, 36, 105-108, (2005).
    [59] A. Campion, P. Kambhampati, Chem. Soc. Rev., 27, 241 (1998)
    [60] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater., 3, 601 (2004).
    [61] S. A. VanSlyke, C. W. Tang, "Electroluminescent device with organic electroluminescent medium," US 5,061,569 (1991).
    [62] H. Kanno, Y. Hamada, H. Takahashi, "Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays," IEEE J. Select. Topic. Quantum Elect., 10, 30-36 (2004).
    [63] T. Mori, K. Miyachi, T. Kichimi, T. Mizutani. Jpn. J. Appl. Phys. Pt. 1, 33 6594-6598 (1994).
    [64] E.I. Maltsev, M.A. Brusentseva, V.A. Kolesnikov, V.I. Berendyaev, B.V. Kotov, A.V. Vannikov. Appl. Phys. Lett., 71, 3480-3482 (1997).
    [65] K. Sugiyama, H. Ishii, Y. Ouchi, K. Seki. J. Appl. Phys., 87, 295-298 (2000) .
    [66] H. Ishii, K. Sugiayama, E. Ito, K. Seki. Adv. Mater., 11, 605-625 (1999).
    [67] H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. v. Seggern. J. Appl. Phys., 89, 420-424 (2001).
    [68] M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest. Appl. Phys. Lett., 75, 4-6 (1999).
    [69] E. F. Schubert, Light Emitting Diodes (Cambridge University Press, Cambridge, U.K., 2006) p.284
    [70] W.R. McCluney. Introduction to radiometry and photometry. Artech House, Boston, London, 1994.
    [71] M. Barbic, J. J. Mock, D. R. Smith, S. J. Schultz, J. Appl. Phys., 91, 9341 (2002).
    [72] J. D. Kottman, O. J. F. Martin, D. R. Smith, S. Schultz, Chem. Phys. Lett., 341, 1 (2001).
    [73] J. J. Mock, D. R. Smith, S. Schultz, Nano. Lett., 3, 485 (2003).
    [74] J. Margueritat, J. Gonzalo, C. N. Afonso, A. Mlayah, D. B. Murray, and L. Saviot, Nano Lett., 6, 2037 (2006).
    [75] H. Gao, J. Henzie, and T. W. Odom, Nano Lett., 6, 2104 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE