研究生: |
黃毅軍 Huang, Yi-Jiun |
---|---|
論文名稱: |
基於領航信號的頻譜感測以及其效能分析 Pilot Based Spectrum Sensing and Its Performance Analysis |
指導教授: |
黃建華
Hwang, Chien-Hwa |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 領航信號 、檢測 、隨機矩陣 、高斯值積規則 、特徵值 |
外文關鍵詞: | pilot signal, detection, random matrix, Gauss quadrature rule, eigenvalue |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無線電感知網路系統(cognitive system)中,無線電頻譜感測(spectrum sensing)技術被用來尋找暫時沒被使用的頻譜,提供其他通訊系統有機會來使用,增加頻譜的使用效率。我們知道在數位通訊之中,為了得到通道的資訊,領航信號(pilot signal)扮演必要的角色。實際上,領航信號會不斷地被主要使用者送出,來得到當下的通道資訊,使得接收器能解回原來的信息。所以我們可以利用判斷領航信號的存在與否,來決定主要使用者是否正在使用頻譜。然而,領航信號在經由頻率選擇衰落通道(frequency selective fading)之後,由接收器收到的信號通常具有高相關性,因此被廣泛使用的能量檢測器(energy detector)不是那麼地有效。這篇論文的目的是在基於領航信號的特色之下,來設計較高效能的檢測器,以及討論它們的性能分析。首先,為了得到領航信號的資訊,我們提出幾個領航信號接收器。為了確保頻譜感測在時間上的可靠度,這些接收器被設計的很簡單而且可以即時反應結果。然後,取決於了解領航信號的多寡可分成不同的情況,針對各種情況,我們設計一些檢測器諸如估測關聯器(estimator-correlator)、局部最有效檢測器(LMP detector)以及特徵值檢測器(eigenvalue detector)。我們也放上模擬結果來說明論文中提及的檢測器,以及傳統檢測器的比較結果。為了致使檢測器更實用,在最後,使用隨機矩陣理論(random matrix theory)和高斯值積規則(Gauss quadrature rule),我們分析各個檢測器的漸進分布函數,以便決定門檻(threshold)而達到所要求的效能。
In cognitive system, spectrum sensing technique exploits unused frequency band for opportunistic wireless transmission, It is known that pilot data transmission is a necessary function in digital communication for channel realization. Then we can determine whether the primary user is on or off by detecting the existence of the pilot signal [1]. However, the received signal is always correlated when it passed through frequency selective fading channel. The widely used energy detector is seems less efficient. In the thesis, we design feature detectors based on pilot data with better performance, and discuss their performance analysis. First, pilot based receivers are proposed in order to provide the pilot information. Then in different cases depending on how we know about the pilot information, some detectors, estimator-correlator, LMP detector and eigenvalue detector, are designed. Simulation results are performed for comparison between proposed detectors and conventional methods. Finally, asymptotical behaviors of these detectors are analyzed by applying random matrix theory and Gauss quadrature rule.
[1] D. Cabric, A. Tkachenko, and R.W. Brodersen, "Spectrum Sensing Measurements of Pilot, Energy, and Collaborative Detection," in IEEE MILCOM, Oct. 2006, pp. 1~7.
[2] S. M. Mishra, S. ten Brink, R. Mahadevappa, and R. W. Brodersen, "Detect and avoid: an ultra-wideband/WiMax coexistence mechanism," IEEE Communications Magazine, vol. 45, no. 6, pp. 68~75, June 2007.
[3] C.-H. Hwang and S.-C. Chen, "Spectrum Sensing in Wideband OFDM Cognitive Radios," submitted to IEEE Transactions on Signal Processing, Aug. 2007.
[4] C. Cordeiro, M. Ghosh, D. Cavalcanti, and K. Challapali, "Spectrum Sensing for Dynamic Spectrum Access of TV Bands," in IEEE CrownCom, Aug. 2007, pp. 225~233.
[5] N. Kundargi and A. Tewfik, "Sequential pilot sensing of ATSC signals in IEEE 802.22 cognitive radio networks," in IEEE ICASSP, Aug. 2008, pp. 2789~2792.
[6] W.-J. Shin, J.-H. Kim, K.-S. Jeong, J.-H. Yi, H.-K. Song, and Y.-H. You, "An Improved Scattered Pilot Detection Scheme for OFDM-Based DVB-H," in IEEE ISSSTA, Aug. 2008, pp. 481~484.
[7] R. Negiand J. Cioffi, "Pilot tone selection for channel estimation in a mobile OFDM system," IEEE Transactions on Consumer Electronics, vol. 44, no. 3, pp. 1122~1128, Aug. 1998.
[8] Steven M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, vol. 2, Prentice Hall, 1998.
[9] A. M. Tulino and S. Verdu, Random Matrix Theory and Wireless Communications (Foundations and Trends in Communications and Information Theory), vol. 1, Now, June 2004.
[10] Gene H. Golub and J. Welsch, "Calculation of Gauss quadrature rules," Tech. Rep., Stanford, CA, USA, 1967.
[11] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd Edition, Wiley, 3 edition, July 2003.
[12] Steven M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, vol. 1, Prentice Hall, 1993.
[13] J. Schafer and Strimmer Korbinian, "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, vol. 4, no. 1, Aug. 2005.
[14] R. R. Nadakuditi and A. Edelman, "Sample Eigenvalue Based Detection of High-Dimensional Signals in White Noise Using Relatively Few Samples," IEEE Transactions on Signal Processing, vol. 56, no. 7, pp. 2625~2638, July 2008.
[15] Y. Zeng and Y.-C. Liang, "Maximum-Minimum Eigenvalue Detectionfor Cognitive Radio," in IEEE PIMRC, Oct. 2007, pp. 1~5.