簡易檢索 / 詳目顯示

研究生: 簡克任
Jian, Ke-Ren
論文名稱: 矽基板上金催化砷化鎵奈米線太陽能電池之成長與製作
Growth and fabrication of Au-catalyzed GaAs nanowire solar cells on Si substrates
指導教授: 黃金花
Huang, Jin-Hua
口試委員: 黃金花
李薇妮
黃柏瑋
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 77
中文關鍵詞: 砷化鎵奈米線奈米線太陽能電池
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於矽太陽能電池,砷化鎵太陽能電池具高光吸收率、直接能隙等優點,以徑向p-n奈米線結構呈現之砷化鎵太陽能電池,更具有增加載子收集能力及光吸收之優勢,對高效率太陽能電池具有極大的開發潛力。
    很多研究已成功在砷化鎵基板上成長砷化鎵奈米線並組裝成太陽能電池,但鮮少於矽基板上成長奈米線並應用於太陽能電池之報導。本研究利用分子束磊晶技術,以金作為催化劑,矽與鈹作為n-type與p-type摻雜,成功地在矽基板上利用VLS機制成長具核殼結構的砷化鎵徑向p-n接面奈米線。元件製作首先將光阻旋塗在奈米線試片上作為阻擋層,接著用氧電漿蝕刻光阻以露出奈米線頂部,續以電子槍蒸鍍系統鍍上氧化銦錫,並經退火10分鐘以形成透明電極。製作完成後的電池元件以掃描式電子顯微鏡觀察表面形貌,並以太陽光能模擬系統量測,確定在矽基板上成長之砷化鎵奈米線可組裝成太陽能電池。


    In comparison with silicon solar cells, the GaAs cells offer the advantage of having high absorption coefficient and direct bandgap. In particular, the GaAs cells in the form of coaxial nanowires offer the further advantage of having optimal light absorption and enhanced carrier collection, and thus have great potential to implement advanced high efficiency schemes.
    Synthesis and fabrication of GaAs nanowire solar cells on GaAs substrates has been widely investigated. However, epitaxial growth of GaAs nanowires on Si substrates has been rarely reported. In this work, we report the realization of GaAs nanowire solar cells on Si substrates. Synthesis of p-n coaxial GaAs nanowires was achieved by means of the Au-catalyzed vapour-liquid-solid (VLS) method by MBE using Be and Si as the p-type and n-type dopants, respectively. In device process, photoresist was first spin coated on the nanowire sample, followed by oxygen plasma etch to remove the photoresist from the tip of the nanowires. Indium tin oxide was then deposited on top of the nanowires by e-beam evaporation and annealed for 10 min to form transparent contact to the sample surface. Morphology of the devices was analyzed by scanning electron microscopy and I-V characteristics were measured using a solar simulation system. The results reveal a good progress for the use of GaAs nanowires in the fabrication of third generation solar cells on Si substrates.

    摘要 Abstract 誌謝 第一章 緒論 1-1前言 1-2研究動機 1-3研究目的與論文架構 第二章 文獻回顧 2-1奈米科技與材料 2-2一維奈米材料 2-3奈米線生長機制 2-4砷化鎵 2-5 GaAs奈米線與結構 2-6奈米線太陽能電池 2-7-1 Si奈米線太陽能電池 2-7-2 GaAs奈米線太陽能電池 第三章 儀器介紹與實驗步驟 3-1分子束磊晶(Molecular Beam Epitaxy, MBE)簡介 3-1-1基本介紹 3-1-2本實驗室的分子束磊晶系統 3-1-3 磊晶原理 3-2電子槍蒸鍍系統 3-3其他製程設備 3-3-1氧電漿表面改質機 3-3-2高溫爐管 3-4實驗步驟 3-3-1實驗流程圖 3-3-2 試片的前處理 3-3-3試片的承載與載入 3-3-4 磊晶成長 3-3-5元件製程 3-6量測儀器 第四章 實驗結果與討論 4-1 奈米線成長殼層時的生長行為 4-2奈米線太陽能電池元件製程 4-2-1電漿轟擊時間對製程的影響 4-2-2 以氧化銦錫做為透明電極的退火條件 4-3 GaAs奈米線太陽能電池元件製作 4-3-1奈米線太陽能電池元件 4-3-2去除光阻後的元件電性 第五章 結論與未來展望 第六章 參考文獻

    1. S. Iijma, Nature 1991, 354, 56.
    2. C. Thelander, T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 2003, 83, 2052.
    3. X. Duan, Y. Huang, R. Agarwal , C. M. Lieber, Nature 2003, 421, 241.
    4. D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C. Zhou, Appl. Phys. A 2003, 77, 163.
    5. B. M. Kayes , H. A. Atwater, J. Appl. Phys. 2005, 97, 114302.
    6. C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht, M. A. El-Sayed, Pure Appl. Chem. 2002, 74, 1675.
    7. M. B. Mohamed, C. Burda, M. A. El-Sayed, Nano Lett. 2001, 1,589.
    8. E. F. Schubert , Quantum mechanics and quantum structures 2003 .
    9. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett 1998, 73, 2447.
    10. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, R. J. Saykally, Nature Materials. 2002, 1, 106.
    11. R. S. Wagner , W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
    12. D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak,J. Xiang,B. P. Timko, C.M. Lieber, Microsc. Res. Tech. 2004, 64, 373.
    13. Y. Wu, P. Yang, J. Am., Chem. Soc. 2001, 123, 3165.
    14. R. Victor Jones, R.L.W.; Available from: http://people.seas.harvard.edu/~jones/es154/lectures/lecture_2/covalent_bond/diam_struct_1.jpg.
    15. I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli1, G. Abstreiter, A. F. i Morral, Phys. Rev. B. 2009, 80, 245324.
    16. T. Mitate1, Y. Sonoda, N. Kuwano, phys. stat. sol. 2002, 192, 383.
    17. M. Heiss, S. Conesa-Boj, J. Ren, H. H. Tseng, A. Gali, A. Rudolph, E. Uccelli, F. Peiró, J. R. Morante, D. Schuh, E. Reiger, E. Kaxiras, J. Arbiol, A. F. i Morral, Phys. Rev. B. 2011, 83, 045303.
    18. B. G.Streetman, S. K.Banerjee, Solid State Electronic Devices. 2005.
    19. R.V. Jones; Available from: http://people.seas.harvard.edu/~jones/ap216/images/bandgap_engineering/bandgap_engineering.html.
    20. M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, IEEE J. Sel. Top. Quant. Elect. 1997, 3,719 .
    21. Available from: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html.
    22. N. Wang, Y. Cai, R.Q. Zhang, Mat. Sci. Eng. R. 2008, 60, 1.
    23. S. Breuer, M. Hilse, A. Trampert, L. Geelhaar, H. Riechert, Phys. Rev. B. 2010, 82, 075406.
    24. V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev, Yu. B. Samsonenko, and V. M. Ustinov, Phys. Rev. B. 2005, 71, 205325.
    25. R.Leitsmann, F. Bechstedt, J. Appl. Phys.2007, 102, 063528.
    26. V. G. Dubrovskii, N. V. Sibirev, Phys. Rev. B 2008, 77, 035414.
    27. G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, K.-L. Lin, Thin Solid Films 2006,511, 654.
    28. Avaliable from: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
    29. K. Sun, A. Kargar, N. Park, K. N. Madsen, P. W. Naughton, T. Bright, Y. Jing, D. Wang, IEEE J. Selected Topics Quantum Electron. 2011, 17, 1033.
    30. E. Garnett, P. Yang, Nano Lett., 2010, 10 , 1082.
    31. M. C. Plante , R. R. LaPierre, Nanotechnology 2008, 19, 495603.
    32. A. Fontcuberta i Morral, D. Spirkoska, J. Arbiol, M. Heigoldt, J. R. Morante, , G. Abstreiter, Small. 2008, 4, 899.
    33. J.A. Czaban, D. A. Thompson, R.R. LaPierre, Nano Lett. 2009, 9,148.
    34. C. Colombo, M. Heiβ, M. Grätzel, A. Fontcuberta i Morral, Appl. Phys. Lett. 94, 173108.
    35. N. Tajik, Z. Peng, P. Kuyanov, R. R. LaPierre, Nanotechnology 2011, 22, 225402 .
    36. A. L. Roest, M. A. Verheijen, O. Wunnicke, S. Serafin, H. Wondergem, E. P. A. M. Bakkers, Nanotechnology 2006, 17, S271.
    37. 真空技術與應用, 行政院國家科學委員會精密儀器發展中心,2001.
    38. M. Hill, Molecular Beam Epitaxy. 1994.
    39. A. Y. Cho , J. Appl. Phys. 1971, 42, 2074.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE