研究生: |
陳俊安 Chun-Ann Chen |
---|---|
論文名稱: |
Doxorubicin誘導rAAV2病毒進行p53腫瘤抑制基因傳遞與表現應用於化療結合基因治療在肝癌治療之研究 Application of Doxorubicin-induced rAAV2-p53 Gene Delivery in Combined Chemotherapy and Gene Therapy for Hepatocellular Carcinoma |
指導教授: |
湯學成
Shiue-Cheng Tang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 化療 、阿黴素 、基因治療 、肝腫瘤 、肝癌 、p53 、第二型重組類腺病毒 |
外文關鍵詞: | chemotherapy, doxorubicin, gene therapy, hepatocellular carcinoma, liver cancer, p53, rAAV2 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳遞抑制腫瘤基因p53有潛力發展成治療肝癌腫瘤的方法之一。第二型重組類腺病毒 ( rAAV2 ) 已應用於臨床試驗,相對於其他常用的病毒載體如腺病毒和反轉錄病毒,rAAV2有較高的安全性。然而治療肝癌腫瘤,提升rAAV2對肝癌細胞的轉導效率是必要的。本研究中,我們利用化療藥物Doxorubicin誘導rAAV2轉導肝癌細胞。實驗數據指出:將Doxorubicin和帶有報導基因的rAAV2合併使用,分別對肝癌細胞HepG2 ( p53原生型 ) 與Hep3B ( 缺乏p53 ) 進行轉導,其報導基因表現量比單獨rAAV2轉導的效率分別高出350和120倍;由於效率大幅提升,我們應用攜帶p53基因的rAAV2 ( rAAV2-p53 ) 對肝癌細胞Hep3B進行轉導,使肝癌細胞Hep3B恢復p53的表現。實驗中,將Doxorubicin和rAAV2-p53合併使用對肝癌細胞Hep3B進行轉導,肝癌細胞Hep3B的p53表現量比單獨rAAV2-p53轉導效率高出16倍,而且相較於HepG2原生型p53的表現量更高出380 %。將Doxorubicin ( 0.5 μM ) 和rAAV2-p53 ( MOI = 10 ) 合併作用在肝癌細胞Hep3B ( 12小時 ) ,我們發現96小時後肝癌細胞的生存率下降至66 %,此結果與肝癌細胞Hep3B只有Doxorubicin ( 1 μM ) 單獨作用的生存率相同。上述將Doxorubicin的劑量從1 μM 降到0.5 μM的實驗結果顯示出rAAV2-p53的基因轉導具有抗癌的效果;與其合併Doxorubicin作用時更具有抑制肝癌腫瘤生長的效用。結論,在Doxorubicin作用下,rAAV2-p53對肝癌細胞的轉導效率有明顯提升,因此合併Doxorubicin和rAAV2-p53對治療因p53突變所引起的肝癌 ( Hepatocellular carcinoma, HCC ) 具有加乘的療效。
[1] Seeff LB. Introduction: The burden of hepatocellular carcinoma. Gastroenterology 2004; 127:S1-4.
[2] Kao JH, Chen DS. Changing disease burden of hepatocellular carcinoma in the Far East and Southeast Asia. Liver Int 2005; 25:696-703.
[3] Sugioka A, Tsuzuki T, Kanai T. Postresection prognosis of patients with hepatocellular carcinoma. Surgery 1993; 113:612-8.
[4] Giaccone G, Schilsky R, Sondel P. Cancer chemotherapy and biological response modifiers. Annual 21. New York : Elsevier 2003:108-9.
[5] Bruix J, Sala M, Llovet JM. Chemoembolization for hepatocellular carcinoma. Gastroenterology 2004; 127:S179-88.
[6] Tanaka S, Toh Y, Adachi E, Matsumata T, Mori R, Sugimachi K. Tumor progression in hepatocellular carcinoma may be mediated by p53 mutation. Cancer Res 1993; 53:2884-7.
[7] Tabor E. Tumor suppressor genes, growth factor genes, and oncogenes in hepatitis B virus-associated hepatocellular carcinoma. J Med Virol 1994; 42:357-65.
[8] Seth P. Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther 2005; 4:512-7.
[9] Gerolami R, Uch R, Brechot C, Mannoni P, Bagnis C. Gene therapy of hepatocarcinoma: a long way from the concept to the therapeutical impact. Cancer Gene Ther 2003; 10:649-60.
[10] Zhang J, Chen X. The p53 family: prospect for cancer gene therapy. Cancer Biol Ther 2007; 6:116-8.
[11] Manno CS, Arruda VR, Pierce GF, Glader B, Ragni M, Rasko J, Ozelo MC, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Nakai H, Chew A, Leonard D, Wright JF, Lessard RR, Sommer JM, Tigges M, Sabatino D, Luk A, Jiang H, Mingozzi F, Couto L, Ertl HC, High KA, Kay MA. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12:342-7.
[12] Moss RB, Rodman D, Spencer LT, Aitken ML, Zeitlin PL, Waltz D, Milla C, Brody AS, Clancy JP, Ramsey B, Hamblett N, Heald AE. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 2004; 125:509-21.
[13] Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D, During MJ. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369:2097-105.
[14] Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70:3227-34.
[15] McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 2001; 8:1248-54.
[16] Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN, Tuddenham EG, Kemball-Cook G, McIntosh J, Boon-Spijker M, Mertens K, Davidoff AM. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 2006; 107:2653-61.
[17] Peng D, Qian C, Sun Y, Barajas MA, Prieto J. Transduction of hepatocellular carcinoma (HCC) using recombinant adeno-associated virus (rAAV): in vitro and in vivo effects of genotoxic agents. J Hepatol 2000; 32:975-85.
[18] Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16:1016-27.
[19] Tang SC, Sambanis A, Sibley E. Proteasome modulating agents induce rAAV2-mediated transgene expression in human intestinal epithelial cells. Biochem Biophys Res Commun 2005; 331:1392-400.
[20] Auricchio A, Hildinger M, O'Connor E, Gao GP, Wilson JM. Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum Gene Ther 2001; 12:71-6.
[21] Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci U S A 1990; 87:1973-7.
[22] Yan Z, Zak R, Zhang Y, Ding W, Godwin S, Munson K, Peluso R, Engelhardt JF. Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia. J Virol 2004; 78:2863-74.
[23] Miao CH, Snyder RO, Schowalter DB, Patijn GA, Donahue B, Winther B, Kay MA. The kinetics of rAAV integration in the liver. Nat Genet 1998; 19:13-5.
[24] Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 2001; 75:6969-76.
[25] Huser D, Weger S, Heilbronn R. Kinetics and frequency of adeno-associated virus site-specific integration into human chromosome 19 monitored by quantitative real-time PCR. J Virol 2002; 76:7554-9.
[26] Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80:293-9.
[27] Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M, Krammer PH. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998; 188:2033-45.
[28] Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature 1997; 389:300-5.
[29] Qian C, Drozdzik M, Caselmann WH, Prieto J. The potential of gene therapy in the treatment of hepatocellular carcinoma. J Hepatol 2000; 32:344-51.
[30] Wang L, Hernandez-Alcoceba R, Shankar V, Zabala M, Kochanek S, Sangro B, Kramer MG, Prieto J, Qian C. Prolonged and inducible transgene expression in the liver using gutless adenovirus: a potential therapy for liver cancer. Gastroenterology 2004; 126:278-89.
[31] Takimoto R, Kato J, Terui T, Takada K, Kuroiwa G, Wu J, Ohnuma H, Takahari D, Kobune M, Sato Y, Takayama T, Matsunaga T, Niitsu Y. Augmentation of antitumor effects of p53 gene therapy by combination with HDAC inhibitor. Cancer Biol Ther 2005; 4:421-8.
[32] Chu L, Gu J, He Z, Xiao T, Liu X. Adenoviral vector expressing CYLD augments antitumor activity of TRAIL by suppression of NF-kappaB survival signaling in hepatocellular carcinoma. Cancer Biol Ther 2006; 5:615-22.
[33] Rossi E, Picozzi P, Bodega B, Lavazza C, Carlo-Stella C, Marozzi A, Ginelli E. Forced expression of RDH10 gene retards growth of HepG2 cells. Cancer Biol Ther 2007; 6:238-44.
[34] Hansen J, Qing K, Srivastava A. Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts. J Virol 2001; 75:4080-90.
[35] Thomas CE, Storm TA, Huang Z, Kay MA. Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. Journal of Virology 2004; 78:3110-22.
[36] Kiyomiya K, Matsuo S, Kurebe M. Mechanism of specific nuclear transport of adriamycin: the mode of nuclear translocation of adriamycin-proteasome complex. Cancer Res 2001; 61:2467-71.
[37] Lencioni R, Cioni D, Della Pina C, Crocetti L, Bartolozzi C. Imaging diagnosis. Semin Liver Dis 2005; 25:162-70.
[38] van der Laan LJ, Taimr P, Kok A, Sprengers D, Zondervan PE, Tilanus HW, Janssen HL. Flowcytometric quantitation of hepatitis B viral antigens in hepatocytes from regular and fine-needle biopsies. J Virol Methods 2007; 142:189-97.
[39] Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang TT. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 2005; 24:367-80.
[40] Takahashi M, Dinse GE, Foley JF, Hardisty JF, Maronpot RR. Comparative prevalence, multiplicity, and progression of spontaneous and vinyl carbamate-induced liver lesions in five strains of male mice. Toxicol Pathol 2002; 30:599-605.
[41] Chiang AS, Liu YC, Chiu SL, Hu SH, Huang CY, Hsieh CH, Comp J. Three-dimensional mapping of brain neuropils in the cockroach. Neurol. 440 ( 2001 ) 1-11.