研究生: |
郭昌昊 Kuo, Chang-Hau |
---|---|
論文名稱: |
光與物質交互作用於單光子層級之同調操控與偵測 Coherent Control and Detection of Light and Matter Interaction at Single Photon Level |
指導教授: |
褚志崧
Chuu, Chih-Sung |
口試委員: |
劉怡維
Liu, Yi-Wei 王立邦 Wang, Li-Bang 陳岳男 Chen, Yueh-Nan 陳光胤 Chen, Guang-Yin 蘇蓉容 Su, Jung-Jung |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 量子光學 、單光子 、非線性光學 、超輻射 、量子同調性見證 、雷給特伽格不等式 |
外文關鍵詞: | quantum optics, single photon, nonlinear optics, superradiance, Leggett-Garg Inequality, quantum coherence witnessing |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文包含二個理論研究分別探討:一、單光子層級的原子系統的量子同調性;二、以損耗調制單光子波包達到單週期之單光子。
第一個部分,以單光子超輻射態描述單光子激發的原子系統並分析它的幾何特性,從分析發現單光子超輻射態具有幾個特性:模態的態密度函數具有羅倫茲布分、頻譜具有拉比分裂的二個峰值。這些特性與等效共振腔模型有良好的對應,並以等效共振腔模型描述這個系統的時間演化,最後利用推廣的Leggett-Garg不等式和量子同調見證檢驗系統是否具有量子同調性,結果都顯示違反古典行為的預測,和具有量子同調性。
第二個部分,以降頻轉換(PDC)產生雙光子對為基礎理論,加入量子朗之萬理論探討具有損耗的降頻轉換。接著,計算和分析雙光子對的格勞勃相關函數和單邊光子的光子生成率,得知格勞勃相關函數的FWHM會隨著損耗越大而越窄。 最後,利用FWHM隨損耗變化的特性,可以預測單週期之單光子需要的損耗大小。
This thesis contains two theoretical studies: 1. The quantum coherence of the system at the single-photon level. 2. Single-cycle single photon wave packet of the parametric down conversion (PDC) with the inherent loss.
In the first part, we study the quantum coherence in the atomic ensemble ex-cited by a single photon. This ensemble can be described by the single-photon su-perradiant state (SPSS). We treat SPSS in the 3D cylindrical coordinate, and discus the geometry effect from the cylinder to the disc by tuning the Fresnel number. Then, the Rabi splitting is observed in the spectrum of SPSS. The density of state of SPSS is shown in the shape of the Lorentzian distribution. Based on these features, SPSS can be mapped to the effective cavity model which couples to a two-level emitter. Finally, to test quantum coherence, the effective cavity model is applied to the extended Leggett-Garg inequality and the quantum coherence witness. The violations of these tests are observed and indicate the system are non-classical, and supposed to be quantum.
In the second part, we study the inherent loss PDC with the quantum Langevin theory. Then, the count rates of each photons and the Glauber correlation function of the biphotons are derived and analyzed. As a result, the FWHM of the Glauber correlation function is inverse proportional to the strength of the inherent loss. Fi-nally, the single-cycle single photon can be predicted by comparing the single cycle period to the FWHM affected by the inherent loss.
參考文獻
[1] S. Zhang, C. Liu, S. Zhou, C.-S. Chuu, M.M.T. Loy, S. Du, Coherent Control of Single-Photon Absorption and Reemission in a Two-Level Atomic Ensemble, Physical Review Letters, 109 (2012).
[2] M.O. Scully, Collective Lamb Shift in Single Photon Dicke Superradiance, Physical Review Letters, 102 (2009).
[3] J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed Experiment to Test Local Hidden-Variable Theories, Physical Review Letters, 23 (1969) 880-884.
[4] A.J. Leggett, A. Garg, Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?, Physical Review Letters, 54 (1985) 857-860.
[5] C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, F. Nori, Witnessing Quantum Coherence: from solid-state to biological systems, Scientific Reports, 2 (2012).
[6] J. Clarke, F.K. Wilhelm, Superconducting quantum bits, Nature, 453 (2008) 1031-1042.
[7] E. Clive, L. Neill, N. Franco, Leggett–Garg inequalities, Reports on Progress in Physics, 77 (2014) 016001.
[8] A.N. Korotkov, D.V. Averin, Continuous weak measurement of quantum coherent oscillations, Physical Review B, 64 (2001).
[9] N.S. Williams, A.N. Jordan, Weak Values and the Leggett-Garg Inequality in Solid-State Qubits, Physical Review Letters, 100 (2008).
[10] A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, A.N. Korotkov, Experimental violation of a Bell’s inequality in time with weak measurement, Nature Physics, 6 (2010) 442-447.
[11] M.E. Goggin, M.P. Almeida, M. Barbieri, B.P. Lanyon, J.L. O'Brien, A.G. White, G.J. Pryde, Violation of the Leggett-Garg inequality with weak measurements of photons, Proceedings of the National Academy of Sciences, 108 (2011) 1256-1261.
[12] S.F. Huelga, T.W. Marshall, E. Santos, Proposed test for realist theories using Rydberg atoms coupled to a high-Qresonator, Physical Review A, 52 (1995) R2497-R2500.
[13] G. Waldherr, P. Neumann, S.F. Huelga, F. Jelezko, J. Wrachtrup, Violation of a Temporal Bell Inequality for Single Spins in a Diamond Defect Center, Physical Review Letters, 107 (2011).
[14] Z.-Q. Zhou, S.F. Huelga, C.-F. Li, G.-C. Guo, Experimental Detection of Quantum Coherent Evolution through the Violation of Leggett-Garg-Type Inequalities, Physical Review Letters, 115 (2015).
[15] V. Athalye, S.S. Roy, T.S. Mahesh, Investigation of the Leggett-Garg Inequality for Precessing Nuclear Spins, Physical Review Letters, 107 (2011).
[16] Y.-T. Wang, J.-S. Tang, Z.-Y. Wei, S. Yu, Z.-J. Ke, X.-Y. Xu, C.-F. Li, G.-C. Guo, Directly Measuring the Degree of Quantum Coherence using Interference Fringes, Physical Review Letters, 118 (2017) 020403.
[17] K. Wang, C. Emary, M. Xu, X. Zhan, Z. Bian, L. Xiao, P. Xue, Violations of a Leggett-Garg inequality without signaling for a photonic qutrit probed with ambiguous measurements, Physical Review A, 97 (2018) 020101.
[18] R.H. Dicke, Coherence in Spontaneous Radiation Processes, Physical Review, 93 (1954) 99-110.
[19] R.A. de Oliveira, M.S. Mendes, W.S. Martins, P.L. Saldanha, J.W.R. Tabosa, D. Felinto, Single-photon superradiance in cold atoms, Physical Review A, 90 (2014).
[20] Z. Liao, M.S. Zubairy, Single-photon modulation by the collective emission of an atomic chain, Physical Review A, 90 (2014).
[21] B. Elattari, S.A. Gurvitz, Influence of measurement on the lifetime and the linewidth of unstable systems, physical Review A, 62 (2000).
[22] Y.-F. Hsiao, H.-S. Chen, P.-J. Tsai, Y.-C. Chen, Cold atomic media with ultrahigh optical depths, Physical Review A, 90 (2014).
[23] E.O. Lawrence, J.W. Beams, The Element of Time in the Photoelectric Effect, Physical Review, 32 (1928) 478-485.
[24] S. Du, P. Kolchin, C. Belthangady, G.Y. Yin, S.E. Harris, Subnatural Linewidth Biphotons with Controllable Temporal Length, Physical Review Letters, 100 (2008) 183603.
[25] P. Kolchin, C. Belthangady, S. Du, G.Y. Yin, S.E. Harris, Electro-Optic Modulation of Single Photons, Physical Review Letters, 101 (2008) 103601.
[26] V. Balić, D.A. Braje, P. Kolchin, G.Y. Yin, S.E. Harris, Generation of Paired Photons with Controllable Waveforms, Physical Review Letters, 94 (2005).
[27] Z.Y. Ou, Y.J. Lu, Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons, Physical Review Letters, 83 (1999) 2556-2559.
[28] C.E. Kuklewicz, F.N.C. Wong, J.H. Shapiro, Time-Bin-Modulated Biphotons from Cavity-Enhanced Down-Conversion, Physical Review Letters, 97 (2006) 223601.
[29] X. Wu, C. Zhou, W.R. Huang, F. Ahr, F.X. Kärtner, Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range, Optics Express, 23 (2015) 29729.
[30] <J Kiessling_n-index of MgO-doped LiNbO3 lithium niobate THz ragne.pdf>, DOI.
[31]資料來源國立中央大學陳彥宏教授的非線性積體雷射元件實驗室。