簡易檢索 / 詳目顯示

研究生: 謝青州
Hsieh, Ching-Chou
論文名稱: 一內嵌式系統即時量測平台
Real-Time Power Measurements of an Embedded System
指導教授: 劉靖家
Liou, Jing-Jia
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 61
中文關鍵詞: 嵌入式系統功率量測
外文關鍵詞: Embedded System, Power Measurements
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功率消耗量對於嵌入式系統平台是有用以及重要的資訊,我們可以使用功率消耗資訊來省電以及延長系統平台的使用時間。完整的系統耗電量描述包括硬體元件的耗電以及應用程式執行行為所造成的耗電。以往的系統耗電工具多為模擬,即以處理器的執行計數器搭配功率模型評估系統。然而,使用模擬方式並不能滿足所有的實際狀態。因此,我們實作了兩個可以量測不同硬體規格的印刷電路板,第一版的功率量測硬體是由乙組數位轉類比積體電路,八組電流旁路監視積體電路以及八組跨壓電組所組成,第一版可以量測Android 待機以及開機的功率消耗。第二版的功率量測硬體是由八組數位轉類比積體電路,八組電流旁路監視積體電路以及八組跨壓電組所組成。第二版量測的解析度依據不同的裝置分別為277.433uA 以及55.4865uA。其中第二版可以透過FPGA 來調整數位轉類比的取樣頻率,可以避免取樣頻率的問題,非常的有彈性。在實驗結果部分,我們用功率量測模組跟安捷倫示波器 (Agilent DSO6052A)進行比對驗證,了解功率量測模組的精準度。ARM core 執行立方方程式最大誤差為3.49%,執行角度換算程式3.73%,執行傅立葉轉換程式3.44%,LCD 最大誤差為3.98%,GSM 最大誤差為3.25%,記憶體模組最大誤差為5.01%,無線網路網卡最大誤差為8.53%。ARM core 執行立方方程式平均誤差為1.89%,執行角度換算程式1.85%,執行傅立葉轉換程式2.06%,LCD 平均誤差為1.11%,GSM平均誤差為0.88%,記憶體模組平均誤差為1.58%,無線網路網卡平均誤差為1.4%。除了ARM core 以外大部分的誤差都分佈在小於1%,ARM core 分佈在1%~2%以及2%~3%之間。


    Power consumption of embedded system platforms is an important and useful information, we
    can use power consumption information to save power and extend using time of system platform.
    The complete system’s power consumption is described by the hardware component’s power consumption
    and the application program execution behavior. In the past, the tool of system power
    consumption was simulation-based. It was using the performance counter of processor and the
    power estimation model. However, it can not satisfy all real status. Hence, we have made two
    hardware measurement modules, it named power measurement board version 1 (PMBV1) and version
    2 (PMBV2); it can measure different hardware of specifications. The PMBV1 consists of
    1 ADC IC (ADS7844), 8 current shunt monitor ICs (INA195), and 8 resistances, it can measure
    Android idle and booting. The PMBV2 consists of 8 ADC ICs (ADS805), 8 current shunt monitor
    ICs (INA19x), and 8 resistances. The PMBV2’s measurement resolution is 277.433uA and
    55.4865uA depend on different device. The PMBV2 can be adjusted ADC’s sample rate through
    FPGA, it can avoid the sample rate issue and it is very flexible.
    In experimental results, we have verified and compared measurement result with oscilloscope
    (Agilent DSO6052A) and power measurement board to realize the accuracy of power measurement
    board. The maximum error of ARM core of benchmark cubic function is 3.49%, ARM core of
    benchmark angle convert is 3.73%, ARM core of benchmark FFT is 3.44%, LCD is 3.98%, GSM
    module is 3.25%, memory module is 5.01%, and USB WiFi is 8.53%. The average error of ARM
    core of benchmark cubic function is 1.89%,ARM core of benchmark angle convert is 1.85%,ARM
    core of benchmark FFT is 2.06%, LCD is 1.11%, GSM module is 0.88%, memory module is
    1.58%, and USB WiFi is 1.4%. The most errors of devices are distribution in 1%, besides ARM
    core is distribution in 1%2% and 2%3%

    1 Introduction 8 1.1 Power Profile Issues For System Optimization . . . . . . . . . . . . . . . . . . . . 8 1.2 Issues on Measurement-based Hardware Module . . . . . . . . . . . . . . . . . . 9 1.3 Proposed Real-time Power measurements for an Embedded System . . . . . . . . 9 1.4 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Measurement-based Real-Time Power Profile Hardware 12 2.1 Architecture of Real-time Power Measurements for Embedded System . . . . . . . 12 2.2 Measurements of Multiple Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Power Measurement Board Version 1 (PMBV1) . . . . . . . . . . . . . . . 16 2.2.2 Power Measurement Board Version 2 (PMBV2) . . . . . . . . . . . . . . . 22 2.3 On Board Non-linearly Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 The Power Characteristic of Different Devices 36 3.1 ARM Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 USB WiFi Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Memory Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2 3.5 GSM Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4 Experimental Results 49 4.1 Verification Results with Power Measurement Board V2 and oscilloscope. . . . . . 50 4.1.1 ARM Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.1.2 LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1.3 USB WiFi Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.4 Memory Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.5 GSM Communication Module . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 System Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5 Conclusions 58 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    [1] Y. Cho, Y. Kim, S. Y. Park, and N. Chang, “System-level power estimation using an on-chip
    bus performance monitoring unit,” in Proceedings of IEEE/ACM International Conference
    on Computer Aided Design (ICCAD), November 2008, pp. 149–154.
    [2] Y.-L. C. LIANG-BI CHEN and I.-J. HUANG, “A real-time power analysis platform for
    power-aware embedded system developments,” 2009.
    [3] Atmel, AT91CAP9A-DK Development Kit User Guide, 2007. [Online]. Available:
    http://www.atmel.com/dyn/resources/prod documents/doc8506.pdf
    [4] ——, AT91CAP9 MPBlock User Guide (Summary), 2007. [Online]. Available: http:
    //www.atmel.com/dyn/resources/prod documents/6324s.pdf
    [5] T. I. (T.I.), ADS7844, 2003. [Online]. Available: http://www.ti.com/lit/gpn/ADS7844
    [6] ——, ADS805, 2002. [Online]. Available: http://www.ti.com/lit/gpn/ADS805
    [7] Atmel, AT91CAP9S500A/AT91CAP9S250A, 2009. [Online]. Available: http://www.atmel.
    com/dyn/resources/prod documents/doc6264.pdf
    [8] T. I. (T.I.), INA195, 2006. [Online]. Available: http://www.ti.com/lit/gpn/ina195
    [9] Hitachi, TX09D70VM1CCA Datasheet, 2008. [Online]. Available: www.hitachi-displays-eu.
    com/doc/TX09D70VM1CCA.pdf
    [10] T. I. (T.I.), INA193, 2006. [Online]. Available: http://www.ti.com/lit/gpn/ina193
    60
    [11] Siemens, MC39i Datasheet, 2005. [Online]. Available: https://www.swe.siemens.com/italy/
    web/AD/ProdottieSoluzioni/HomeSC/ModuliWirelesseSoluzionim2m/PortafolioProdotti/
    Documents/CP-AD/Sito/SC/WM/PortafolioProdotti/Datenblatt MC39i20GB 1189266.pdf
    [12] KEITHLEY, KEITHLEY 2400, 2005. [Online]. Available: http://www.keithley.com.tw/
    products/localizedproducts/sourcemeter/2400
    [13] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, “Mibench: A
    free, commercially representative embedded benchmark suite,” Workload Characterization,
    Annual IEEE International Workshop, vol. 0, pp. 3–14, 2001.
    [14] Atmel, AT91CAP9 SAM-BA User Guide, 2010. [Online]. Available: http://www.atmel.com/
    dyn/resources/prod documents/6421B.pdf
    61

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE