簡易檢索 / 詳目顯示

研究生: 鍾佳民
Chung, Chia-Min
論文名稱: Quantum Monte Carlo Study of Two Component Bosons and Entanglement
指導教授: 陳柏中
Chen, Pochung
口試委員: 林秀豪
Hsiu-Hau Lin
高英哲
Ying-Jer Kao
陽明峯
Min-Fong Yang
蘇正耀
Zheng-Yao Su
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: 量子蒙地卡羅蒙地卡羅糾纏兩類玻色子配對超固體配對超流體糾纏譜負值
外文關鍵詞: quantum Monte Carlo, Monte Carlo, entanglement, two species bosons, pair-supersolid, pair-superfluid, entanglement spectrum, negativity
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文大略包含兩個部分。在第一部分我們討論光晶格中的玻色子的量子相,主要是使用量子蒙地卡羅的數值方法。冷原子在光晶格中的實驗提供了一個模擬凝態材料系統的可能性,其系統是乾淨且受良好控制的,我們主要關注兩類玻色子的系統,其中會出現有奇特的相。例如配對超流以及配對超固體。在第二部分我們以量子蒙地卡羅為基礎提出了一些數值方法來計算強關聯系統中的糾纏性質。利用複製品技巧,我們藉由計算雷尼熵來重建糾纏譜。另外我們研究了部分轉置密度矩陣的蹟數,是個與混合態糾纏的測量—負值—相關的量。下面我們簡短的總結每一個章節。
    在第一章我們非常簡短的簡介冷原子系統以及它與量子蒙地卡羅計算之間的關係。
    在第二章我們回顧路徑積分表相的蒙地卡羅方法。我們專注在方向性蟲演算法,是一個對玻色子以及自旋系統都很有力的方法。這個論文裡的其他方法—包括兩類玻色子、糾纏譜、以及部分轉置的計算—都是基於這章所介紹的演算法衍伸的。
    在第三章我們討論兩類玻色子在方晶格中。我們展示出異類間的吸引力以及同類間的排斥力能使系統形成配對超固體,其中對角線的固體序並存於非對角線的配對超流序。我們表徵了超固體到其他相的量子相變以及溫度相變。我們發現從配對超固體到雙超流的相變是個一階相變且沒有任何中間相。另外,配對超固體的融化過程分為兩階段。首先配對超流經過一個 KT 相變被溫度摧毀,然後是固體序經由 Ising相變的融化。
    在第四章我們提供了一個新的方法,利用量子蒙地卡羅重新建立量子多體系統的部分糾纏譜。此方法原則上能用在二維或更高維度。此方法建立在複製品技巧上,來計算粒子數解析的約化密度矩陣的 n 次方的蹟數。利用這些資訊我們使用多項式解根重新建立了前 n 個糾纏譜的譜帶。我們演示我們的方法在一維的延展玻色哈伯模型,能解析出Haldane 絕緣體的糾纏譜中的亞簡併。整體來說,這個方法能讓我們重建出最大的幾個本徵值。
    在第五章我們設計了一個蒙地卡羅方法來計算有限溫度下部分轉置約化密度矩陣的某次方的蹟數。這個量能用來建立一些與負值有關的尺度不變量。負值是一個能真正測量一個線段中的兩個區段的糾纏的量。具體來說,我們討論了在一維硬核玻色子模型下的幾個尺度不變的結合量。對於兩個連接的區段,我們展示了異常的有限尺度修正,顯示了周長與填滿相關的震盪的奇偶效應。在大尺度下我們得到與保角場論的計算完全符合的結果。另一方面,對於兩個分開的區段有限尺度修正較為嚴重,而保角場論的結果只能在取極限下被得到。同時我們的證據也顯示了修正的指數項與互訊息的修正是一樣的。另外我們研究了一維玻色子模型的超流相。在此系統中有限尺度修正較小,稍大系統的量子蒙地卡羅的結果已經能良好的符合保角場論的計算。


    This thesis is divided into two parts. In the first part we study quantum phases in bosonic systems in an optical lattice by using numerical unbiased Quantum Monte Carlo (QMC) method. Ultracold atoms experiments in optical lattices provide a possibility to simulate the materials of condensed matter in a clean and well-controled way. We focus on two components bosonic systems where exotic phases such as pair-superfluid and pair-supersolid appear. In the second part we provide numerical methods based on QMC simulations to study the entanglement properties of strong correlated systems. By employing the replica trick, we reconstruct the entanglement spectrum from the Renyi entropies. Furthermore, we study the trace of the power of the partial transposed reduced density matrix, which is related to the entanglement measurement negativity for mixed states. In the following we briefly summarize each chapter.
    In Chapter 1 we very briefly introduce the cold atom systems and the connection with QMC simulations.
    In Chapter 2 we review the QMC method based on the path integral (world line) representation. We focus on the directed worm algorithm which is an efficient algorithm with global updtae for bosonic and spin systems. All the following methods in this thesis – the method of two component bosonic systems, the reconstruction of entanglement spectrum and the measuring of partial transposed quantities, are based on directed worm algorithm introduced in this chapter.
    In Chapter 3 we discuss two component bosons in a square lattice. We show that the interspecies attraction and nearest-neighbor intraspecies repulsion result in the pair-supersolid phase, where a diagonal solid order coexists
    with an off-diagonal pair-superfluid order. The quantum and thermal transitions out of the pair-supersolid phase are characterized. It is found that there is a direct first-order transition from the pair-supersolid phase to the double-superfluid phase without an intermediate region. Furthermore, the melting of the pair-supersolid occurs in two steps. Upon heating, first the pair-superfluid is destroyed via a Kosterlitz-Thouless transition, then the solid order melts via an Ising transition.
    In Chapter 4 we represent a new method to reconstruct a subset of the entanglement spectrum of quantum many body systems by QMC, where the method can in principle be applied to two or higher dimension. The approach builds on the replica trick to evaluate particle number resolved traces
    of the first n of powers of a reduced density matrix. From this information we reconstruct first n entanglement spectrum levels using a polynomial root solver. We illustrate the power and limitations of the method by an application to the extended Bose-Hubbard model in one dimension where we are able to resolve the quasidegeneracy of the entanglement spectrum in the Haldane-insulator phase. In general, the method is able to reconstruct the largest few eigenvalues in each symmetry sector.
    In Chapter 5 we devise a Quantum Monte Carlo (QMC) method to calculate the moments of the partially transposed reduced density matrix at finite temperature. These are used to construct scale invariant combinations that are related to the negativity, a true measure of entanglement for two
    intervals embedded in a chain. In particular, we study several scale invariant combinations of the moments for the 1D hard-core boson model. For two adjacent intervals unusual finite size corrections are present, showing parity
    effects that oscillate with a filling dependent period. For large chains we find perfect agreement with conformal field theory (CFT) calculations. Oppositely, for disjoint intervals corrections are more severe and CFT is recovered
    only asymptotically. Furthermore, we provide evidence that their exponent is the same as that governing the corrections of the mutual information. Additionally we study the 1D Bose-Hubbard model in the superfluid phase. The finite-size effects are smaller and QMC data are already in impressive
    agreement with CFT at moderate large sizes.

    1 Introduction 1.1 Bose-Einstein Condensation 1.2 Cold Atoms in Optical Lattices 2 Quantum Monte Carlo, directed worm algorithm 2.1 General concepts 2.1.1 Monte Carlo strategy 2.1.2 Markov Chains 2.2 Path integral quantum Monte Carlo 2.3 World line diagrams 2.4 Directed Worm Algorithm 2.4.1 Local updates 2.4.2 Global update 2.4.3 Probabilities of local updates 2.4.4 Psudo code of a global update 2.5 Measurements 3 Two species bosonic systems in optical lattice 3.1 Introduction 3.2 Model and method 3.3 Mean field calculations 3.3.1 Effective Hamiltonian for strong attraction 3.3.2 Perturbative mean field calculation 3.4 QMC for bosonic mixture 3.4.1 Complete updates 3.4.2 Psudo code 3.5 Numerical Results 3.6 Conclusion and Discussion 4 Entanglement Spectroscopy using Quantum Monte Carlo 4.1 Introduction 4.2 method 4.2.1 QMC Implementation 4.2.2 Reconstructing the Entanglement Spectrum 4.3 Numerical results 4.3.1 Locating the Phase Transitions 4.3.2 Entanglement Reconstruction 4.4 Summary and Discussion 5 Entanglement negativity via replica trick: a Quantum Monte Carlo approach 5.1 Introduction 5.2 Summary of results 5.3 Models & observables 5.4 The moments of ρT2 : QMC algorithm 5.5 Two adjacent intervals 5.6 Unusual scaling corrections 5.7 Two disjoint intervals 5.8 Summary & discussion

    [1] P. KAPITZA. Viscosity of liquid helium below the -point. Nature,
    141:74, 1938.
    [2] M. R. Matthews C. E. Wieman M. H. Anderson, J. R. Ensher and
    E. A. Cornell. Observation of bose-einstein condensation in a dilute
    atomic vapor. Science, 269:198, 1995.
    [3] C. J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute
    Gases. CAMBRIDGE, 2002.
    [4] Anthony J. Leggett. Bose-einstein condensation in the alkali gases:
    Some fundamental concepts. Rev. Mod. Phys., 73:307–356, 2001.
    [5] F. Gerbier U. Schnorrberger I. Bloch N. V. Prokofev B. Svistunov
    M. Troyer S. Trotzky, L. Pollet. Suppression of the critical temper-
    ature for superfluidity near the mott transition. Nature Physics, 6:998,
    2010.
    [6] Matthew P. A. Fisher, Peter B. Weichman, G. Grinstein, and Daniel S.
    Fisher. Boson localization and the superfluid-insulator transition.
    Phys. Rev. B, 40:546–570, 1989.
    [7] B. Capogrosso-Sansone, S. S ̈yler, N. Prokof’ev, and B. Svistunov.
    o
    Phys. Rev. A, 77:015602, 2008.
    [8] Shiang Fang, Chia-Min Chung, Ping Nang Ma, Pochung Chen, and
    Daw-Wei Wang. Quantum criticality from in situ density imaging.
    Phys. Rev. A, 83:031605, 2011.
    [9] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn. Exact, complete,
    and universal continuous-time worldline monte carlo approach to the
    statistics of discrete quantum systems. JETP, 87:310, 1998.
    [10] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn. Worm algorithm
    in quantum Monte Carlo simulations. Physics Letters A, 238:253, 1998.
    70
    [11] L. Pollet, K. Van Houcke, and S. M. A. Rombouts. Engineering lo-
    cal optimality in quantum Monte Carlo algorithms. J. Comp. Phys.,
    225:2249, 2007.
    [12] Lode Pollet, Stefan M. A. Rombouts, Kris Van Houcke, and Kris
    Heyde. Optimal monte carlo updating. Phys. Rev. E, 70:056705, 2004.
    [13] Anders W. Sandvik. Stochastic series expansion method with operator-
    loop update. Phys. Rev. B, 59:R14157–R14160, 1999.
    [14] Olav F. Sylju ̊
    asen and Anders W. Sandvik. Quantum monte carlo with
    directed loops. Phys. Rev. E, 66:046701, 2002.
    [15] R. Schneider H. Fehske and A. Weie (Eds.).
    Many-Particle Physics. Springer, 2008.
    Computational
    [16] Lode Pollet. Ph.D thesis. PhD thesis, Universiteit Gent, 2004.
    [17] Naoki Kawashima and Kenji Harada. Recent developments of world-
    line monte carlo methods. Journal of the Physical Society of Japan,
    73(6):1379–1414, 2004.
    [18] E. L. Pollock and D. M. Ceperley. Path-integral computation of super-
    fluid densities. Phys. Rev. B, 36:8343–8352, 1987.
    [19] A. J. Leggett. Can a Solid Be ”Superfluid”? Phys. Rev. Lett., 25:1543–
    1546, 1970.
    [20] G. V. Chester. Speculations on Bose-Einstein Condensation and Quan-
    tum Crystals. Phys. Rev. A, 2:256–258, 1970.
    [21] E Kim and M H W Chan. Probable observation of a supersolid helium
    phase. Nature, 427:225–7, 2004.
    [22] Pinaki Sengupta, Leonid Pryadko, Fabien Alet, Matthias Troyer,
    and Guido Schmid. Supersolids versus Phase Separation in Two-
    Dimensional Lattice Bosons. Phys. Rev. Lett., 94:1–4, 2005.
    [23] C. Trefzger, C. Menotti, and M. Lewenstein. Pair-Supersolid Phase in
    a Bilayer System of Dipolar Lattice Bosons. Phys. Rev. Lett., 103:1–4,
    2009.
    [24] Ehud Altman, Walter Hofstetter, and Eugene Demler. Phase diagram
    of two-component bosons on an optical lattice. New J. Phys., 5:1–19,
    2003.
    71
    [25] Anatoly Kuklov, Nikolay Prokofev, and Boris Svistunov. Commen-
    surate Two-Component Bosons in an Optical Lattice: Ground State
    Phase Diagram. Phys. Rev. Lett., 92:050204, 2004.
    [26] Pochung Chen and Min-Fong Yang. Quantum phase transitions in a
    two-species hard-core boson Hubbard model in two dimensions. Phys.
    Rev. B, 82:180510, 2010.
    [27] A. B. Kuklov and B. V. Svistunov. Counterflow Superfluidity of Two-
    Species Ultracold Atoms in a Commensurate Optical Lattice. Phys.
    Rev. Lett., 90:100401, 2003.
    [28] A. Arg ̈elles and L. Santos. Mott-insulator phases of nonlocally coupled
    u
    one-dimensional dipolar Bose gases. Phys. Rev. A, 75:1–5, 2007.
    [29] Takahiro Ohgoe and Naoki Kawashima. Quantum Monte Carlo method
    for pairing phenomena: Supercounterfluid of two-species Bose gases in
    optical lattices. Phys. Rev. A, 83:1–4, 2011.
    [30] C Trefzger, C Menotti, B Capogrosso-Sansone, and M Lewenstein. Ul-
    tracold dipolar gases in optical lattices. Journal of Physics B: Atomic,
    Molecular and Optical Physics, 44(19):193001, 2011.
    [31] Massimo Boninsegni and Nikolay Prokofev. Supersolid Phase of Hard-
    Core Bosons on a Triangular Lattice. Phys. Rev. Lett., 95:1–4, 2005.
    [32] Nikolay Prokofev and Boris Svistunov. Two-dimensional weakly in-
    teracting Bose gas in the fluctuation region. Phys. Rev. A, 66:1–7,
    2002.
    [33] L. Amico, R. Fazio, A. Osterloh, and V. Vedral. Entanglement in
    many-body systems. Rev. Mod. Phys., 80:517, 2008.
    [34] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the
    entanglement entropy. Rev. Mod. Phys., 82:277–306, 2010.
    [35] A. Kitaev and J. Preskill. Topological entanglement entropy. Phys.
    Rev. Lett., 96:110404, 2006.
    [36] Michael Levin and Xiao-Gang Wen. Detecting topological order in a
    ground state wave function. Phys. Rev. Lett., 96:110405, 2006.
    [37] S. V. Isakov, M. B. Hastings, and R. G. Melko. Topological entan-
    glement entropy of a bose-hubbard spin liquid. Nature Physics, 7:772,
    2011.
    72
    [38] H.-C. Jiang, Z. Wang, and L. Balents. Identifying topological order by
    entanglement entropy. Nat. Phys., 8:902, 2012.
    [39] Christoph Holzhey, Finn Larsen, and Frank Wilczek. Geometric and
    renormalized entropy in conformal field theory. Nuclear Physics B,
    424(3):443 – 467, 1994.
    [40] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in
    quantum critical phenomena. Phys. Rev. Lett., 90:227902, 2003.
    [41] Pasquale Calabrese and John Cardy. Entanglement entropy and quan-
    tum field theory. J. Stat. Mech.: Theor. Exp., (06):P06002, 2004.
    [42] H. Li and F.D.M. Haldane. Entanglement spectrum as a generaliza-
    tion of entanglement entropy: Identification of topological order in
    non-abelian fractional quantum hall effect states. Phys. Rev. Lett.,
    101:010504, 2008.
    [43] Noah Bray-Ali, Letian Ding, and Stephan Haas. Topological order in
    paired states of fermions in two dimensions with breaking of parity and
    time-reversal symmetries. Phys. Rev. B, 80:180504, 2009.
    [44] N. Regnault, B. A. Bernevig, and F. D. M. Haldane. Phys. Rev. Lett.,
    103:016801, 2009.
    [45] A. M. L ̈uchli, E. J. Bergholtz, J. Suorsa, and M. Haque. Phys. Rev.
    a
    Lett., 104:156404, 2010.
    [46] R. Thomale, A. Sterdyniak, N. Regnault, and B. Andrei Bernevig.
    Entanglement gap and a new principle of adiabatic continuity. Phys.
    Rev. Lett., 104:180502, 2010.
    [47] Ronny Thomale, D. P. Arovas, and B. Andrei Bernevig. Nonlocal order
    in gapless systems: Entanglement spectrum in spin chains. Phys. Rev.
    Lett., 105:116805, 2010.
    [48] Frank Pollmann, Ari M. Turner, Erez Berg, and Masaki Oshikawa.
    Entanglement spectrum of a topological phase in one dimension. Phys.
    Rev. B, 81:064439, 2010.
    [49] Ari M. Turner, Yi Zhang, and Ashvin Vishwanath. Entanglement and
    inversion symmetry in topological insulators. Phys. Rev. B, 82:241102,
    2010.
    73
    [50] Mehdi Kargarian and Gregory A. Fiete. Topological phases and phase
    transitions on the square-octagon lattice. Phys. Rev. B, 82:085106,
    2010.
    [51] Emil Prodan, Taylor L. Hughes, and B. Andrei Bernevig. Entanglement
    spectrum of a disordered topological chern insulator. Phys. Rev. Lett.,
    105:115501, 2010.
    [52] Lukasz Fidkowski. Entanglement spectrum of topological insulators
    and superconductors. Phys. Rev. Lett., 104:130502, 2010.
    [53] Z. Papi ́, B. A. Bernevig, and N. Regnault. Topological entanglement
    c
    in abelian and non-abelian excitation eigenstates. Phys. Rev. Lett.,
    106:056801, 2011.
    [54] J. Dubail and N. Read. Entanglement spectra of complex paired su-
    perfluids. Phys. Rev. Lett., 107:157001, 2011.
    [55] Taylor L. Hughes, Emil Prodan, and B. Andrei Bernevig. Inversion-
    symmetric topological insulators. Phys. Rev. B, 83:245132, 2011.
    [56] Lukasz Fidkowski, T. S. Jackson, and Israel Klich. Model characteriza-
    tion of gapless edge modes of topological insulators using intermediate
    brillouin-zone functions. Phys. Rev. Lett., 107:036601, 2011.
    [57] Xiao-Liang Qi, Hosho Katsura, and Andreas W. W. Ludwig. General
    relationship between the entanglement spectrum and the edge state
    spectrum of topological quantum states. Phys. Rev. Lett., 108:196402,
    2012.
    [58] Ari M. Turner, Yi Zhang, Roger S. K. Mong, and Ashvin Vishwanath.
    Quantized response and topology of magnetic insulators with inversion
    symmetry. Phys. Rev. B, 85:165120, 2012.
    [59] M. A. Metlitski and T. Grover. 2011.
    [60] Vincenzo Alba, Masudul Haque, and Andreas M. L ̈uchli. Entangle-
    a
    ment spectrum of the two-dimensional bose-hubbard model. Phys. Rev.
    Lett., 110:260403, 2013.
    [61] P. Calabrese and A. Lef`vre.
    e
    Entanglement spectrum in one-
    dimensional systems. Phys. Rev. A, 78:032329, 2008.
    74
    [62] Frank Pollmann, Subroto Mukerjee, Ari M. Turner, and Joel E. Moore.
    Theory of finite-entanglement scaling at one-dimensional quantum crit-
    ical points. Phys. Rev. Lett., 102:255701, 2009.
    [63] G. De Chiara, L. Lepori, M. Lewenstein, and A. Sanpera. Entanglement
    spectrum, critical exponents, and order parameters in quantum spin
    chains. Phys. Rev. Lett., 109:237208, 2012.
    [64] Andreas M. L ̈uchli. Operator content of real-space entanglement spec-
    a
    tra at conformal critical points. arXiv:1303.0741, 2013.
    [65] K. Okunishi, Y. Hieida, and Y. Akutsu. Universal asymptotic eigen-
    value distribution of density matrices and corner transfer matrices in
    the thermodynamic limit. Phys. Rev. E, 59:R6227, 1999.
    [66] X. Deng and L. Santos. Phys. Rev. B, 84:085138, 2011.
    [67] Xiaolong Deng, Roberta Citro, Edmond Orignac, Anna Minguzzi,
    and Luis Santos. Bosonization and entanglement spectrum for one-
    dimensional polar bosons on disordered lattices. New Journal of
    Physics, 15(4):045023.
    [68] Hong-Chen Jiang, Stephan Rachel, Zheng-Yu Weng, Shou-Cheng
    Zhang, and Zhenghan Wang. Critical theory of the topological quan-
    tum phase transition in an s = 2 spin chain. Phys. Rev. B, 82:220403,
    2010.
    [69] J. I. Cirac, D. Poilblanc, N. Schuch, and F. Verstraete. Phys. Rev. B,
    83:245134, 2011.
    [70] R. G. Melko, A. B. Kallin, and M. B. Hastings. Finite-size scaling
    of mutual information in monte carlo simulations: Application to the
    spin- 1 xxz model. Phys. Rev. B, 82:100409, 2010.
    2
    [71] M. B. Hastings, I. Gonzalez, A. B. Kallin, and R. G Melko. Measuring
    r ́nyi entanglement entropy with quantum monte carlo. Phys. Rev.
    e
    Lett., 104:157201, 2010.
    [72] S. Humeniuk and T. Roscilde. Quantum monte carlo calculation of
    entanglement r ́nyi entropies for generic quantum systems. Phys. Rev.
    e
    B, 86:235116, 2012.
    [73] F. Haussdorff.
    Summationsmethoden und momentfolgen.
    Mathematische Zeitschrift, 9:74, 1921.
    75
    I.
    [74] J. A. Shohat and J. D. Tamarkin. The Problem of Moments. Am.
    Math. Soc., New York, 1943.
    [75] T. M. P. Ngoc. A statistical minimax approach to the hausdorff mo-
    ment problem. Inv. Prob., 24:045018, 2008.
    [76] H. Francis Song, Stephan Rachel, Christian Flindt, Israel Klich, Nicolas
    Laflorencie, and Karyn Le Hur. Bipartite fluctuations as a probe of
    many-body entanglement. Phys. Rev. B, 85:035409, 2012.
    [77] P. Guillaume, J. Schoukens, and R. Pintelon. Sensitivity of roots
    to errors in the coefficient of polynomials obtained by frequency -
    domain estimation methods. IEEE Transactions on Instrumentation
    and Measurement, 38:1050, 1989.
    [78] Emanuele G. Dalla Torre, Erez Berg, and Ehud Altman. Hidden order
    in 1d bose insulators. Phys. Rev. Lett., 97:260401, 2006.
    [79] Erez Berg, Emanuele G. Dalla Torre, Thierry Giamarchi, and Ehud
    Altman. Rise and fall of hidden string order of lattice bosons. Phys.
    Rev. B, 77:245119, 2008.
    [80] L Amico, G Mazzarella, S Pasini, and F S Cataliotti. Hidden order in
    bosonic gases confined in one-dimensional optical lattices. New Journal
    of Physics, 12(1):013002, 2010.
    [81] Davide Rossini and Rosario Fazio. Phase diagram of the extended
    bose-hubbard model. New Journal of Physics, 14(6):065012, 2012.
    [82] G. G. Batrouni, R. T. Scalettar, V. G. Rousseau, and B. Gr ́maud.
    e
    Competing supersolid and haldane insulator phases in the extended
    one-dimensional bosonic hubbard model. Phys. Rev. Lett., 110:265303,
    2013.
    [83] Frank Pollmann, Erez Berg, Ari M. Turner, and Masaki Oshikawa.
    Symmetry protection of topological phases in one-dimensional quantum
    spin systems. Phys. Rev. B, 85:075125, 2012.
    [84] Andreas M L ̈uchli and Corinna Kollath. Spreading of correlations
    a
    and entanglement after a quench in the one-dimensional bose-hubbard
    model. J. Stat. Mech.: Theor. Exp., 2008(05):P05018, 2008.
    [85] Wei Chen, Kazuo Hida, and B. C. Sanctuary. Ground State Phase Di-
    agram of S=1 XXZ Chains with Uniaxial Single-Ion-TypeAnisotropy.
    Phys. Rev. B, 67:104401, 2003.
    76
    [86] Y. Zhang, T. Grover, and A. Vishwanath. Entanglement entropy of
    critical spin liquids. Phys. Rev. Lett., 107:067202, 2011.
    [87] Y. Zhang, T. Grover, and A. Vishwanath. Topological entanglement
    entropy of z2 spin liquids and lattice laughlin states. Phys. Rev. B,
    84:075128, 2011.
    [88] Yi Zhang, Tarun Grover, and Ashvin Vishwanath. Erratum: Topolog-
    ical entanglement entropy of 2 spin liquids and lattice laughlin states
    [phys. rev. b 84, 075128 (2011)]. Phys. Rev. B, 85:199905, May 2012.
    [89] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vishwanath.
    Quasiparticle statistics and braiding from ground-state entanglement.
    Phys. Rev. B, 85:235151, 2012.
    [90] J. McMinis and N. M. Tubman. Renyi entropy of the interacting fermi
    liquid. Phys. Rev. B, 87:081108, 2013.
    [91] A. J. Daley, H. Pichler, J. Schachenmayer, and P. Zoller. Measuring
    entanglement growth in quench dynamics of bosons in an optical lattice.
    Phys. Rev. Lett., 109:020505, 2012.
    [92] A. Osterloh, L. Amico, G. Falci, and R Fazio. Scaling of entanglement
    close to a quantum phase transition. Nature, 416:608, 2002.
    [93] Pasquale Calabrese, John Cardy, and Benjamin Doyon. Entanglement
    entropy in extended quantum systems. J. Phys. A: Math. Theor.,
    42(50):500301, 2009.
    [94] J. Cardy. The ubiquitous c: from the stefan-boltzmann law to quantum
    information. J. Stat. Mech.: Theor. Exp., page P10004, 2010.
    [95] Michele Caraglio and Ferdinando Gliozzi. Entanglement entropy and
    twist fields. JHEP, 11:076, 2008.
    [96] Shunsuke Furukawa, Vincent Pasquier, and Jun’ichi Shiraishi. Mu-
    tual information and boson radius in a c = 1 critical system in one
    dimension. Phys. Rev. Lett., 102:170602, 2009.
    [97] Pasquale Calabrese, John Cardy, and Erik Tonni. Entanglement en-
    tropy of two disjoint intervals in conformal field theory. J. Stat. Mech.:
    Theor. Exp., 2009(11):P11001, 2009.
    [98] Pasquale Calabrese and John Cardy. Entanglement entropy and con-
    formal field theory. J. Phys. A: Math. Theor., 42(50):504005, 2009.
    77
    [99] F. Igloi and I. Peschel. On reduced density matrices for disjoint sub-
    systems. EPL, 89:40001, 2010.
    [100] Maurizio Fagotti and Pasquale Calabrese. Entanglement entropy
    of two disjoint blocks in xy chains. J. Stat. Mech.: Theor. Exp.,
    2010(04):P04016, 2010.
    [101] Maurizio Fagotti and Pasquale Calabrese. Universal parity effects in
    the entanglement entropy of xx chains with open boundary conditions.
    J. Stat. Mech.: Theor. Exp., 2011(01):P01017, 2011.
    [102] M. Fagotti. New insights into the entanglement of disjoint blocks. EPL,
    97(1):17007, 2012.
    [103] Vincenzo Alba, Luca Tagliacozzo, and Pasquale Calabrese. Entangle-
    ment entropy of two disjoint blocks in critical ising models. Phys. Rev.
    B, 81:060411, 2010.
    [104] V. Alba, L. Tagliacozzo, and P. Calabrese. Entanglement entropy of
    two disjoint intervals in c = 1 theories. J. Stat. Mech.: Theor. Exp.,
    (06):P06012, 2011.
    [105] Pasquale Calabrese, John Cardy, and Erik Tonni. Entanglement en-
    tropy of two disjoint intervals in conformal field theory: Ii. J. Stat.
    Mech.: Theor. Exp., 2011(01):P01021, 2011.
    [106] A. Coser, L. Tagliacozzo, and E. Tonni. arXiv:1309.2189, 2013.
    [107] Michael M. Wolf, Frank Verstraete, Matthew B. Hastings, and J. Ig-
    nacio Cirac. Area laws in quantum systems: Mutual information and
    correlations. Phys. Rev. Lett., 100:070502, Feb 2008.
    [108] G. Vidal and R. F. Werner. Computable measure of entanglement.
    Phys. Rev. A, 65:032314, 2002.
    [109] H. Wichterich, J. Molina-Vilaplana, and S. Bose. Scaling of entangle-
    ment between separated blocks in spin chains at criticality. Phys. Rev.
    A, 80:010304, 2009.
    [110] Hannu Wichterich, Julien Vidal, and Sougato Bose. Universality of the
    negativity in the lipkin-meshkov-glick model. Phys. Rev. A, 81:032311,
    2010.
    [111] Pasquale Calabrese, John Cardy, and Erik Tonni. Entanglement neg-
    ativity in quantum field theory. Phys. Rev. Lett., 109:130502, 2012.
    78
    [112] Pasquale Calabrese, John Cardy, and Erik Tonni. Entanglement nega-
    tivity in extended systems: a field theoretical approach. J. Stat. Mech.:
    Theor. Exp., (02):P02008, 2013.
    [113] Yirun Arthur Lee and Guifre Vidal. Entanglement negativity and topo-
    logical order. arxiv:1306.5711, 2013.
    [114] Claudio Castelnovo. Negativity and topological order in the toric code.
    Phys. Rev. A, 88:042319, 2013.
    [115] F. Gliozzi and L. Tagliacozzo. Entanglement entropy and the complex
    plane of replicas. J. Stat. Mech.: Theor. Exp., page P01002, 2010.
    [116] Vincenzo Alba. Entanglement negativity and conformal field theory:
    a monte carlo study. J. Stat. Mech.: Theor. Exp., 2013(05):P05013,
    2013.
    [117] R. R. P Singh, M. B. Hastings, A. B Kallin, and R. G. Melko. Finite
    temperature critical behavior of mutual information. Phys. Rev. Lett.,
    106:135701, 2011.
    [118] R. K. Kaul, R. G. Melko, and A W Sandvik. Bridging lattice-scale
    physics and continuum field theory with quantum monte carlo simula-
    tions. Ann. Rev. Cond. Matt. Phys., 4:179, 2013.
    [119] S. Inglis and R. G. Melko. A wang-landau method for calculating r ́nyi
    e
    entropies in finite-temperature quantum monte carlo simulations. Phys.
    Rev. E, 87:013306, 2013.
    [120] J. Iaconis, S. Inglis, A. B. Kallin, and R. G. Melko. Detecting clas-
    sical phase transitions with r ́nyi mutual information. Phys. Rev. B,
    e
    87:195134, 2013.
    [121] Chia-Min Chung, Lars Bonnes, Pochung Chen, and Andreas M.
    L ̈uchli. Entanglement spectroscopy using quantum monte carlo. Phys.
    a
    Rev. B, 89:195147, 2014.
    [122] F. F. Assaad, T. C. Lang, and F. P. Toldin. Entanglement Spec-
    tra of Interacting Fermions in Quantum Monte Carlo Simulations.
    arXiv:1311.5851, 2013.
    [123] K. Binder. Phys. Rev. Lett., 47:693, 1981.
    [124] K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner. Entanglement
    properties of the harmonic chain. Phys. Rev. A, 66:042327, 2002.
    79
    [125] John Cardy and Pasquale Calabrese. Unusual corrections to scaling in
    entanglement entropy. J. Stat. Mech.: Theor. Exp., 2010(04):P04023,
    2010.
    [126] Bernard Nienhuis, Massimo Campostrini, and Pasquale Calabrese. En-
    tanglement, combinatorics and finite-size effects in spin chains. J. Stat.
    Mech.: Theor. Exp., 2009(02):P02063, 2009.
    [127] Pasquale Calabrese, Massimo Campostrini, Fabian Essler, and Bernard
    Nienhuis. Parity effects in the scaling of block entanglement in gapless
    spin chains. Phys. Rev. Lett., 104:095701, 2010.
    [128] Pasquale Calabrese and Fabian H L Essler. Universal corrections to
    scaling for block entanglement in spin-1/2xx chains. J. Stat. Mech.:
    Theor. Exp., 2010(08):P08029, 2010.
    [129] T. D. K ̈hner and H. Monien. Phases of the one-dimensional bose-
    u
    hubbard model. Phys. Rev. B, 58:R14741–R14744, 1998.
    [130] Stephan Rachel, Nicolas Laflorencie, H. Francis Song, and Karyn
    Le Hur. Detecting quantum critical points using bipartite fluctuations.
    Phys. Rev. Lett., 108:116401, 2012.
    [131] Pasquale Calabrese, Luca Tagliacozzo, and Erik Tonni. Entanglement
    negativity in the critical ising chain. J. Stat. Mech.: Theor. Exp., page
    P05002, 2013.
    [132] Nicolas Laflorencie, Erik S. Sørensen, Ming-Shyang Chang, and Ian
    Affleck. Boundary effects in the critical scaling of entanglement entropy
    in 1d systems. Phys. Rev. Lett., 96:100603, 2006.
    [133] Ian Affleck, Nicolas Laflorencie, and Erik S Sørensen. Entanglement
    entropy in quantum impurity systems and systems with boundaries. J.
    Phys. A: Math. Theor., 42(50):504009, 2009.
    [134] Maurizio Fagotti and Pasquale Calabrese. Universal parity effects in
    the entanglement entropy of xx chains with open boundary conditions.
    J. Stat. Mech.: Theor. Exp., 2011(01):P01017, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE