簡易檢索 / 詳目顯示

研究生: 簡 捷
Chein, Chieh
論文名稱: 變温掃描穿隧顯微鏡之重新運行於二維材料檢測
Re-commissioning of a Variable Temperature STM: Expansion and Inspection of 2D Materials
指導教授: 霍夫曼
Hoffmann, Germar
口試委員: 莊天明
Chuang, Tien-Ming
徐斌睿
Hsu, Pin-Jui
蘇維彬
Su, Wei-Bin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 112
中文關鍵詞: 變温掃描程式設計真空量子穿隧穿隧顯微鏡二維材料
外文關鍵詞: TMDC, Arduino, 2Dmaterial, NiTe2, HOPG
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 術語“單層材料”或“二維材料”指的是由原子單層組成的結晶固體。在某些情
    況下,一些層之間弱相互作用的薄膜也被稱為“二維材料”,當層間相互作用明
    顯弱於單層內部時,會導致獨特的準二維特性。例如,儘管由多個層組成,多
    層石墨烯仍然被認為具有二維結構[1]。這些二維材料對局部幾何形狀非常敏
    感,易於透過吸附物進行修飾。
    二維材料具有高遷移率、高導電性、優越的機械強度和長自旋擴散長度等獨
    特優勢,使其適用於自旋電子裝置。然而,它們並不普遍優於體材料,面臨著
    與尺寸、可擴展性、穩定性、整合、成本和特異性等相關的挑戰。
    在本研究中,我們獲得了過渡金屬二硫化物(TMDCs)材料[2],包括來
    自國立成功大學(NCKU)呂欽山教授磊晶實驗室的NiTe2[3]和來自台灣半導體
    製造公司(TSMC)的WS2[4]。因此,我們關注TMDCs家族。TMDCs的化學式
    為MX2,其中M是過渡金屬,X是硫族元素,由於其獨特的帶隙、優異的光吸
    收[5]、強烈的限域效應、高電子遷移率[6]和層間耦合[7]等特性,TMDCs表現出
    多樣的性質和潛在應用。它們在電子裝置、奈米技術、表面科學和能量儲存等
    領域具有應用潛力。
    在表面科學領域,掃描穿隧顯微術(Scanning Tunneling Microscopy, STM)作
    為一種強大的工具,提供了對實空間成像的原子分辨率,從而揭示了表面科
    學之地形和形態的洞察,並可訪問局部電子性質[8]。與XPS和PES等技術相
    比,STM在捕捉非週期性修改方面表現出色,展示了其在研究二維材料方面的
    強大優勢。
    此外,我們提出了一個基於Arduino的STM系統自動監控流程,簡化和最佳
    化加熱、壓力測量和溫度監控等中間步驟。此方法涉及使用DAC、ADC、電源
    和其他監控項目進行有效的控制和監控,確保STM操作更加順利和有效率。
    總體而言,本研究深入探討了二維材料的獨特性質和潛力,重點關
    注TMDCs,並強調了STM在表面科學研究中的關鍵作用,提高了我們對這些材
    料在各種技術應用中的理解和利用。
    6


    The term ’single-layer materials’ or ’2-D materials’ refers to crystalline solids comprising a monolayer of atoms. In some cases, a few layers of weakly interacting films are also referred to as ’2-D materials’ when the interlayer interaction is significantly weaker than within the single layer, leading to distinct quasi 2-D
    properties. For example, despite consisting of multiple layers, multilayer graphene is still considered to possess a 2-D structure. These 2-D materials exhibit high sensitivity to local geometry, making them easily modifiable by adsorbates.
    2-D materials offer unique advantages such as high mobility, conductivity, mechanical strength, and long spin diffusion length, making them suitable for spintronic devices. However, they aren’t universally superior to bulk materials, facing challenges related to size, scalability, stability, integration, cost, and specificity.
    In this study, we got the Transition Metal Dichalcogenides (TMDCs) materials.
    They are NiTe2 from Prof. Ching-Shan Lue’s Epitaxy Laboratory in National Cheng Kung University (NCKU) and WS2 from Taiwan Semiconductor Manufacturing Company (TSMC). Therefore, we focus on TMDCs family. TMDCs, with the formula MX2, where M is a transition metal and X is a chalcogen, demonstrate
    diverse properties and potential applications due to their distinct band gap, excellent optical absorption, strong confinement effect, high electron mobility, and interlayer coupling. They are useful in our electronics, nanotechnology, surface science, and enery storage, etc.
    In the realm of surface science, Scanning Tunneling Microscopy (STM) emerges as a powerful tool, providing atomic resolution for real-space imaging, thereby giving topography, and morphology insights and access local electronic properties.
    Compared to techniques like XPS and PES, STM excels in capturing non-periodic modifications, showcasing its strength in investigating 2-D materials.
    Additionally, we present an Arduino-based automated monitoring process for STM systems, streamlining and optimizing intermediate steps like bake-out, pressure measurement, and temperature monitoring. This approach involves utilizing DAC, ADC, Power Supply, and additional monitoring projects for efficient control and monitoring, ensuring smoother and effective STM operation.
    Overall, this study delves into the distinct properties and potential of 2-D materials, focusing on TMDCs, and emphasizes the pivotal role of STM in surface science investigations, enhancing our understanding and utilization of these materials in diverse technological applications.

    Abstract 4 中文摘要6 Acknowledgement 7 1 Introduction 8 2 Theory 10 2.1 Tunneling theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 STM principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Bardeen Theory . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Constant current/height mode . . . . . . . . . . . . . . . . . 17 3 Instrumentation 19 3.1 Omicron VT-STM . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Rotary Pump . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 Turbomoleculer Pump . . . . . . . . . . . . . . . . . . . . . 23 3.2.3 Ion Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.4 Titanium Sublimation Pump . . . . . . . . . . . . . . . . . . 25 3.3 Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 Load-Lock Chamber . . . . . . . . . . . . . . . . . . . . . . 26 3.3.2 Preparation Chamber . . . . . . . . . . . . . . . . . . . . . . 26 3.3.3 STM Chamber . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Normal Temperature Environment . . . . . . . . . . . . . . . . . . 27 4 Arduino Project 28 4.1 Project Task: Recording of Pressure . . . . . . . . . . . . . . . . . . 29 4.2 Arduino theory application . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 Arduino Theory . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2 Arduino Application . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Digital-to-Analog Convertor . . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 Operating principle of I2C . . . . . . . . . . . . . . . . . . . 39 4.3.2 1 channel DAC control . . . . . . . . . . . . . . . . . . . . . 42 4.3.3 2 channels DAC communication . . . . . . . . . . . . . . . . 44 4.3.4 Intergrated Arduino box . . . . . . . . . . . . . . . . . . . . 45 4.3.5 Voltage division rule and Manual linear correction . . . . . . 46 4.3.6 Omicron ion-gauge recorder . . . . . . . . . . . . . . . . . . 48 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Experiment 53 5.1 Well-known 2-D material . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1.1 Si(111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.1.2 Highly oriented pyrolytic graphite (HOPG) . . . . . . . . . . 59 5.2 TMDCs materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.1 WS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2.2 NiTe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Summary 95 6 Appendix 96 6.1 Daily Working Table . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2 DAC Arduino code . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3 Unisoku Multi-gauge Arduino code . . . . . . . . . . . . . . . . . . 100 6.4 Omicron preparation ion gauge GP-370 Arduino code . . . . . . . . 103 6.5 Omicron STM ion gauge PGC2D Arduino code . . . . . . . . . . . 104

    [1] Frank Schwierz. Graphene transistors. Nature nanotechnology, 5(7):487–496,
    2010.
    [2] Stephen J McDonnell and Robert M Wallace. Atomically-thin layered films
    for device applications based upon 2D TMDC materials. Thin Solid Films,
    616:482–501, 2016.
    [3] C Ballif, M Regula, and F Levy. Optical and electrical properties of semiconducting
    WS2 thin films: From macroscopic to local probe measurements.
    Solar energy materials and solar cells, 57(2):189–207, 1999.
    [4] Brandon T Blue, Stephanie D Lough, Duy Le, Jesse E Thompson, Talat S
    Rahman, R Sankar, and Masahiro Ishigami. Scanning tunneling microscopy
    and spectroscopy of NiTe2. Surface Science, 722:122099, 2022.
    [5] Cheng-Hsien Yang and Shu-Tong Chang. First-principles study of the optical
    properties of TMDC/graphene heterostructures. volume 9, page 387. MDPI,
    2022.
    [6] R Hashemi, S Shojaei, and Zheng Liu. Electronic and transport properties of
    TMDC planar superlattices: effective hamiltonian approach. Physica Scripta,
    96(12):125808, 2021.
    [7] Klaus Zollner, Paulo E Faria Junior, and Jaroslav Fabian. Strain-tunable
    orbital, spin-orbit, and optical properties of monolayer transition-metal
    dichalcogenides. Physical Review B, 100(19):195126, 2019.
    [8] R´egis Decker, Yang Wang, Victor W Brar, William Regan, Hsin-Zon Tsai,
    Qiong Wu, William Gannett, Alex Zettl, and Michael F Crommie. Local
    electronic properties of graphene on a BN substrate via scanning tunneling
    microscopy. Nano letters, 11(6):2291–2295, 2011.
    [9] Qian Shen, Hong-Ying Gao, and Harald Fuchs. Frontiers of on-surface synthesis:
    From principles to applications. Nano Today, 13:77–96, 2017.
    [10] Qiang Sun, Renyuan Zhang, Jun Qiu, Rui Liu, and Wei Xu. On-surface synthesis
    of carbon nanostructures. Advanced Materials, 30(17):1705630, 2018.
    [11] Hongyu Shi, Yuhong Liu, Jian Song, Xinchun Lu, Yanfang Geng, Junyong
    Zhang, Jingli Xie, and Qingdao Zeng. On-surface synthesis of self-assembled
    monolayers of benzothiazole derivatives studied by STM and XPS. Langmuir,
    33(17):4216–4223, 2017.
    [12] Maximilian Ammon, Tim Sander, and Sabine Maier. On-surface synthesis of
    porous carbon nanoribbons from polymer chains. Journal of the American
    Chemical Society, 139(37):12976–12984, 2017.
    [13] Leilei Zhang, Aiqin Wang, Wentao Wang, Yanqiang Huang, Xiaoyan Liu,
    Shu Miao, Jingyue Liu, and Tao Zhang. Co–N–C catalyst for C–C coupling
    reactions: on the catalytic performance and active sites. ACS Catalysis,
    5(11):6563–6572, 2015.
    [14] Caroline J Scheuermann. Beyond traditional cross couplings: the scope of
    the cross dehydrogenative coupling reaction. Chemistry–An Asian Journal,
    5(3):436–451, 2010.
    [15] R Martel, Ph Avouris, and I-W Lyo. Molecularly adsorbed oxygen species
    on Si (111)-(7× 7): STM-induced dissociative attachment studies. Science,
    272(5260):385–388, 1996.
    [16] M Karimi, R Tu, J Peng, W Lennard, GH Chapman, and KL Kavanagh.
    Transparent conducting indium bismuth oxide. Thin solid films, 515(7-
    8):3760–3765, 2007.
    [17] ScientaOmicron. Spare parts catalogue spm. V2.4 ˆ 05 July 2019, 2019.
    [18] Chunxiao Cong, Jingzhi Shang, Yanlong Wang, and Ting Yu. Optical properties
    of 2D semiconductor WS2. Advanced Optical Materials, 6(1):1700767,
    2018.
    [19] E Kobeda and EA Irene. A measurement of intrinsic SiO2 film stress resulting
    from low temperature thermal oxidation of Si. Journal of Vacuum Science
    & Technology B: Microelectronics Processing and Phenomena, 4(3):720–722,
    1986.
    [20] Gopal Ramalingam, Poopathy Kathirgamanathan, Ganesan Ravi, Thangavel
    Elangovan, Nadarajah Manivannan, Kaviyarasu Kasinathan, et al. Quantum
    confinement effect of 2D nanomaterials. IntechOpen, 2020.
    [21] Frank Trixler. Quantum tunnelling to the origin and evolution of life. Current
    organic chemistry, 17:1758–1770, 08 2013.
    [22] C Julian Chen. Introduction to Scanning Tunneling Microscopy Third Edition,
    volume 69. Oxford University Press, USA, 2021.
    [23] Bui Kevin, Fauman Jacob, Kes David, Torres Leticia, Adina Ciomaga,
    Salazar Ricardo, Bertozzi Andrea, Jerome Gilles, Guttentag Andrew, and
    Paul Weiss. Segmentation of scanning tunneling microscopy images using
    variational methods and empirical wavelets. Pattern Analysis and Applications,
    23, 05 2020.
    [24] LEC Van de Leemput and H Van Kempen. Scanning tunnelling microscopy.
    Reports on Progress in Physics, 55(8):1165, 1992.
    [25] Teng-Hui Chen, Jeng-Nan Lee, Ming-Jhang Shie, and Yu-Cheng Chen. Studies
    on the numerical control programming for multi-axis machining of turbomolecular
    pump rotor. Electronics, 12(6), 2023.
    [26] adnanaqeel. Introduction to Arduino Mega 2560, 2018.
    [27] P Kopperschmidt, G K¨astner, D Hesse, ND Zakharov, and U G¨osele. High
    bond energy and thermomechanical stress in silicon on sapphire wafer bonding.
    Applied physics letters, 70(22):2972–2974, 1997.
    [28] Dmitri Y. Petrovykh, Jian Wang, Fengnian Xia, and Leonid Jastrabik. Reconstructions
    of Si(111) surfaces. Applied Surface Science, 255:1229–1236,
    2008.
    [29] Lin Hsuan-Ting. On-Surface synthesis of 3,10 Bis(Bromo Methyl)-[5]
    Phenacene. 2022.
    [30] PhysicsOpenlab. Graphite structure, 2018.
    [31] Micromasch. Highly ordered pyrolytic graphite, 2023.
    [32] AIST-NT. HOPG info, 2023. Accessed: 2023-02-21.
    [33] Holger Wolfschmidt, Claudia Baier, Stefan Gsell, Martin Fischer, Matthias
    Schreck, and Ulrich Stimming. STM, SECPM,AFM and Electrochemistry on
    Single Crystalline Surfaces. Materials, 3(8):4196–4213, 2010.
    [34] Sumati Patil, Sadhu Kolekar, and Aparna Deshpande. Revisiting HOPG
    superlattices: Structure and conductance properties. Surface Science, 658:55–
    60, 2017.
    [35] Morewell Gasseller, Jessica Ritchie, and Erin McCarthy. STM image artifacts
    on highly ordered pyrolitic graphite that could be mistaken for carbon
    nanotubes. US-China Education Review, 6(4):262–267, 2016.
    [36] EBL Products. Piezoceramic tubes, 2023. Accessed: 2023-02-21.
    [37] Qiuran Lv, Fei Chen, Yuan Xia, andWeitao Su. Recent progress in fabrication
    and physical properties of 2D TMDC-based multilayered vertical heterostructures.
    Electronics, 11(15):2401, 2022.
    [38] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim,
    Chi-Yung Chim, Giulia Galli, and Feng Wang. Emerging photoluminescence
    in monolayer MoS2. Nano letters, 10(4):1271–1275, 2010.
    [39] Nan Zhu, Shuang Han, Shiyu Gan, Jens Ulstrup, and Qijin Chi. Graphene paper
    doped with chemically compatible prussian blue nanoparticles as nanohybrid
    electrocatalyst. Advanced Functional Materials, 23(42):5297–5306, 2013.
    [40] Yong Wang, Taiyang Zhang, Miao Kan, and Yixin Zhao. Bifunctional stabilization
    of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics.
    Journal of the American Chemical Society, 140(39):12345–12348, 2018.
    [41] Sunghwan Jo, Jin-Woo Jung, Jaeyoung Baik, Jang-Won Kang, Il-Kyu Park,
    Tae-Sung Bae, Hee-Suk Chung, and Chang-Hee Cho. Surface-diffusionlimited
    growth of atomically thin WS2 crystals from core–shell nuclei.
    Nanoscale, 11(18):8706–8714, 2019.
    [42] Weijie Zhao, Zohreh Ghorannevis, Leiqiang Chu, Minglin Toh, Christian
    Kloc, Ping-Heng Tan, and Goki Eda. Evolution of electronic structure in
    atomically thin sheets of WS2 and WSe2. ACS nano, 7(1):791–797, 2013.
    [43] Ifat Kaplan-Ashiri, Sidney R Cohen, Konstantin Gartsman, Viktoria
    Ivanovskaya, Thomas Heine, Gotthard Seifert, Inna Wiesel, H DanielWagner,
    and Reshef Tenne. On the mechanical behavior of WS2 nanotubes under axial
    tension and compression. Proceedings of the National Academy of Sciences,
    103(3):523–528, 2006.
    [44] L Rapoport, V Leshchinsky, I Lapsker, Yu Volovik, O Nepomnyashchy,
    M Lvovsky, Ronit Popovitz-Biro, Y Feldman, and R Tenne. Tribological prop-erties of WS2 nanoparticles under mixed lubrication. Wear, 255(7-12):785–
    793, 2003.
    [45] Min Hong, Pengfei Yang, Xiebo Zhou, Siqin Zhao, Chunyu Xie, Jianping Shi,
    Zhepeng Zhang, Qiang Fu, and Yanfeng Zhang. Decoupling the interaction
    between wet-transferred MoS2 and graphite substrate by an interfacial water
    layer. Advanced Materials Interfaces, 5(21):1800641, 2018.
    [46] Carlo Rizza, Debasis Dutta, Barun Ghosh, Francesca Alessandro, Chia-Nung
    Kuo, Chin Shan Lue, Lorenzo S Caputi, Arun Bansil, Vincenzo Galdi, Amit
    Agarwal, et al. Extreme optical anisotropy in the type-II Dirac semimetal
    NiTe2 for applications to nanophotonics. ACS Applied Nano Materials,
    5(12):18531–18536, 2022.
    [47] Chunqiang Xu, Bin Li, Wenhe Jiao, Wei Zhou, Bin Qian, Raman Sankar,
    Nikolai D Zhigadlo, Yanpeng Qi, Dong Qian, Fang-Cheng Chou, et al. Topological
    type-II Dirac Fermions approaching the Fermi level in a transition
    metal dichalcogenide NiTe2. Chemistry of materials, 30(14):4823–4830, 2018.
    [48] Barun Ghosh, Debashis Mondal, Chia-Nung Kuo, Chin Shan Lue, Jayita
    Nayak, Jun Fujii, Ivana Vobornik, Antonio Politano, and Amit Agarwal.
    Observation of bulk states and spin-polarized topological surface states in
    transition metal dichalcogenide Dirac semimetal candidate NiTe2. Physical
    Review B, 100(19):195134, 2019.
    [49] Joseph A Hlevyack, Liang-Ying Feng, Meng-Kai Lin, Rovi Angelo B Villaos,
    Ro-Ya Liu, Peng Chen, Yao Li, Sung-Kwan Mo, Feng-Chuan Chuang, and
    T-C Chiang. Dimensional crossover and band topology evolution in ultrathin
    semimetallic NiTe2 films. npj 2D Materials and Applications, 5(1):40, 2021.
    [50] Wen-XiaoWang, Kaihui Li, Xiaoshan Dong, Hao Xie, Jinglan Qiu, Chunqiang
    Xu, Kai Liu, Juntao Song, Yi-Wen Wei, Ke Bai, Xiaofeng Xu, and Ying Liu.
    Exploring native atomic defects in NiTe2, 01 2022.
    [51] BE Powell and Jack H Davis. Cleavage crystals of InBi. Materials Letters,
    6(10):356–358, 1988.
    [52] Yan Sun, Yang Zhang, Claudia Felser, and Binghai Yan. Strong intrinsic spin
    hall effect in the TaAs family of Weyl semimetals. Physical Review Letters,
    117(14):146403, 2016.
    [53] Zeang Zhao, Chao Yuan, Ming Lei, Le Yang, Qiang Zhang, Haosen Chen,
    H Jerry Qi, and Daining Fang. Three-dimensionally printed mechanical metamaterials
    with thermally tunable auxetic behavior. Physical Review Applied,
    11(4):044074, 2019.
    [54] Changhua Bao, Peizhe Tang, Dong Sun, and Shuyun Zhou. Light-induced
    emergent phenomena in 2D materials and topological materials. Nature Reviews
    Physics, 4(1):33–48, 2022.
    [55] Silvia Nappini, DanilWBoukhvalov, Gianluca D’Olimpio, Libo Zhang, Barun
    Ghosh, Chia-Nung Kuo, Haoshan Zhu, Jia Cheng, Michele Nardone, Luca
    Ottaviano, et al. Transition-metal dichalcogenide NiTe2: an ambient-stable
    material for catalysis and nanoelectronics. Advanced Functional Materials,
    30(22):2000915, 2020.
    [56] DG Schlom, Dario Anselmetti, JG Bednorz, RF Broom, A Catana, T Frey,
    Ch Gerber, H J G¨untherodt, HP Lang, and J Mannhart. Screw dislocation
    mediated growth of sputtered and laser-ablated YBa2 Cu3 O7−Δ films.
    Zeitschrift f¨ur Physik B Condensed Matter, 86:163–175, 1992.
    [57] Jain A. The materials project. NiTe2, February 2023.
    [58] Ernst Meyer, Roland Bennewitz, and Hans J Hug. Introduction to scanning
    tunneling microscopy. In Scanning Probe Microscopy: The Lab on a Tip,
    pages 13–45. Springer, 2021.

    QR CODE